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Abstract

In this paper, in order to evaluate the performance of a DMU in Production Possible Set (PPS) with Variable Return to Scale (VRS)
technology, we provide models to obtain non negative weights for inputs for outputs and a nonnegative scalar corresponding to inputs
and a nonnegative scalar corresponding to outputs which for the weights and scalars, the number of which DMUs for each one its virtual
output plus the scalar corresponding to inputs does not exceed (is less than, if any) its virtual input plus the scalar corresponding to inputs
be maximum, provided that for DMU under evaluation, the virtual output plus the scalar corresponding to inputs does not exceed (is less
than, if any) the virtual input plus the scalar corresponding to inputs and the virtual input will be positive. We call these weights and
scalars the relatively best weight in input-oriented (the relatively strongest weight in input-oriented, if any) for the DMU under evaluation,
and if all the weights be positive we call them the best weight in input-oriented (the strongest weight in input-oriented, if any) for the
DMU under evaluation. Also, we define input-otiented efficiency and input-oriented strictly efficiency (input-oriented strongly efficiency),
respectively, as ratio the number of which DMUs for each one per the relatively best weight in input-oriented and the best weight in
input-oriented (the relatively strongest weight in input-oriented), its virtual input plus the scalar related to inputs does not exceed (is less)
its virtual input plus the scalar related to outputs, to the total DMUs. Similarly we define the relatively best weight in output-oriented (the
relatively strongest weight in input-oriented, if any), the best weight in output-oriented (the strongest weight in output-oriented, if any),
output-oriented efficiency and output-otiented strictly efficiency (output-oriented strongly efficiency). The relatively best weight in input-
oriented (the relatively strongest weight in input-otiented) indicates normal vector of a superface in the PPS with VRS assumption that
the DMU under evaluation is on the superface and the maximum number of which DMUs their performance are no worse than (is better
than) the DMU under evaluation separate from the rest of DMUs, with the constraint that the virtual input be positive. Accordingly, we
can interpret the rest of the definitions of non-negative weights for inputs and for outputs and nonnegative scalars related to inputs and
outputs. In this paper, we present the relationship between these definitions of efficiency with efficiency in the DEA models with VRS
assumption.

Keywords: Data envelopment analysis, Efficiency analysis, Separation hyperplanes.

1| Introduction

The input-oriented BCC Banker et. al [1] multiplier form of Data Envelopment Analysis (DEA), obtains non
negative weights for inputs, non-negative weights for outputs and a scalar which is free in sign by maximizing
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virtual output plus a scalar unrestricted in sign, provided that the virtual output plus the scalar does not exceed
the virtual input for each DMU and the virtual output be equal to one [1]—[5]. If the scalar be non-negative,
it is interpret to subsidization and if the scalar be non-positive, its negative is interpret to setup fee. In this
paper, with respect to one's inspiration from the input-oriented. BCC multiplier form, to evaluate the
performance of a DMU, we obtain non negative weights for inputs and outputs, a nonnegative scalar
corresponding to inputs and a nonnegative scalar corresponding to outputs which for the weights and scalars,
the number of which DMUs for each one its virtual output plus the scalar corresponding to inputs does not
exceed (is less than, if any) its virtual input plus the scalar corresponding to inputs be maximum, provided
that for DMU under evaluation, the virtual output plus the scalar corresponding to inputs does not exceed
(is less than, if any) the virtual input plus the scalar corresponding to inputs and the virtual input will be
positive [6]—[9].

On the other word, we are going to obtain non negative weights for the inputs and the outputs of DMU
under evaluation, a nonnegative scalar related to inputs and a nonnegative scalar related to outputs which for
the weights and scalars, the number of which DMUs for each one its income plus subsidization does not
exceed (is less than, if any) its cost plus setup fee be maximum, provided that for DMU under evaluation its
income plus subsidization will be equal to its cost plus setup fee and cost resulting from the inputs of the
DMU will be positive. We call these weights and scalars, the relatively best weight in input-oriented (the
relatively strongest weight in input-oriented, if any) for the DMU under evaluation, and if all of these weights
be positive, we call them the best weight in input-oriented (the strongest weight in input-oriented, if any) for
the DMU under evaluation. Also, we define input-oriented efficiency and input-oriented strictly efficiency
(input-oriented strongly efficiency), respectively, as ratio the number of which DMUs for each one per the
relatively best weight in input-oriented and the best weight in input-oriented (the relatively strongest weight
in input-oriented), its virtual input plus the scalar corresponding to inputs does not exceed (is less) its virtual
input plus the scalar corresponding to outputs, to the total DMUs. Similarly, the relatively best weight in
output-oriented (the relatively strongest weight in input-oriented, if any), the best weight in output-oriented
(the strongest weight in output-oriented, if any), output-oriented efficiency and output-oriented strictly
efficiency (output-oriented strongly efficiency) are defined. Also we are going to obtain non negative weights
for the inputs and the outputs of DMU under evaluation, a nonnegative scalar corresponding to inputs and a
nonnegative scalar related to outputs which for the weights and scalars, the number of which DMUS for each
one its income plus subsidization does not exceed (is less than, if any) its cost plus setup fee be maximum,
provided that for DMU under evaluation its income plus subsidization will be equal to its cost plus setup fee
and both cost resulting from the inputs and income resulting from outputs of the DMU will be positive. We
call these weights and scalars the relatively best weight (the relatively strongest weight, if any) for the DMU
under evaluation. If all the weights be positive, we call them the best weight (the strongest weight, if any) for
the DMU under evaluation. Also, we define efficiency and strictly efficiency (strongly efficiency, if any),
respectively, as ratio the number of which DMUs for each one per the relatively best weight in input-oriented
and the best weight in input-oriented (the relatively strongest weight, if any), its virtual input plus the scalar
related to inputs does not exceed (is less, if any) its virtual input plus the scalar corresponding to outputs, to
the total DMUs. The relatively best weight in input-oriented (the relatively strongest weight in input-oriented)
indicates normal vector of a superface in the PPS with Variable Return to Scale (VRS) assumption that the
DMU under evaluation is on the superface and the maximum number of which DMUs their performance are
no worse than (is better than) the DMU under evaluation separate from the rest of DMUSs, with the constraint
that the virtual input be positive [10], [11]. Accordingly, we can interpret the rest of the definitions of non-
negative weights for inputs and for outputs and nonnegative scalars corresponding to inputs and outputs. In
this paper, we present the relationship between these definitions of efficiency with efficiency in the DEA
models with VRS assumption.
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2| Preliminaries

Suppose we have n =2 peer observed DMUs,{DMU;:j =1,2,..,n} which produce multiple outputs
yrj, (r = 1,...,s), by utilizing multiple inputs x;;, (i = 1,...,m). The input and output vectors of DMU; are
denoted by x; and yj, respectively, and we assume that x;and y; are semipositive, i.e. ,X; = 0, x; # 0 and y; =
0,y; # 0 fori=1,..,n. We use by (xj, y;) to descript DMUj, and specially use (X,, y,)(0€{1,2, ...,n}) as the
DMU under evaluation. Throughout this paper, vectors will be denoted by bold letters.

2.1| The Variable Return to Scale Model

The production set B, of the BCC model is defined as a set of semi-positive (x,y) as follows [1]:

P ={Gy)l x> L A &y < By Ay & XL, 4 =11},

where (A4, ...,A,) is a semi-positive in R™. The input-oriented BCC model evaluates the efficiency of each

DMU, by solving the following linear program:

0* = min6,
n
Z}\]X] < eXol
j=1
n
.t PR (1)
j=1

n
j=1

A=0 j=1,..,n,

where 0 is a scaler. Because X; and yj are semipositive for j = 1,2, ...,n,0" > 0. Also since (8,A = (A4, ..., 7))
is a feasible solution to Model (1), where 8 =1, A; = 0(j # 0),A, = 1, then 8" < 1. Thus 0 < 8" < 1. 8"
represents the input-oriented BCC-efficiency value of DMU,,.

Definition 1. (input-oriented BCC-efficient). The performance of DMU, is the input-oriented BCC-
efficient if and only if 8" = 1.

The dual problem of Mode/ (1) is expressed as:

z* = max u'y, + u,,
vix, =1, @)
t t L
s.t. uyj +u, < V'x;, j=12,..,n,

uz=o0,vz=o0,

where veR™ and ueR® are row vectors and represent dual variables corresponding to Eg. (7) and Egq. (2),
respectively. From strong duality theorem 6" = z* , thus 0 < z* < 1.

2.2| The Two-Phases for Input-Oriented BCC Model

The two-phase process for BCC model evaluates the efficiency of DMU, by solving the following linear
program:
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m S
min S—E(ZS{ +Zs;“),
i=1 r=1
n

ZA]XU + Si_ = Gxio ,i = 1, e, 1N,
j=1

Ay st =y e 1 ©)
j¥rj — Sr Yro »T ey S,

S.t.

j
;20,57 20,sf =20, forallj,forall i,forall r,
where € > 0 is the non-Archimedian element.

Definition 2. (BCC-efficient). The performance of DMU, is BCC-efficient if only if an optimal solution
(6,1%,5*7,5*%) of the two-phase Model (4) satisfies 6" = 1,s™" = 0,s** = 0.

The dual multiplier form of program Mode/ (4) is expressed as:

max  u'y, +u,,
vix, =1,
t t :
s.t. uyj+u, < vy, forallj,
u=1lev > le.

“)

By Definition 2 and by strong duality theorem, the performance of DMU, is BCC-efficient if only if an optimal
solution (u*,v*) of Mode/ (4) satisfies u 'y, +u, = 1.

Definition 3. (Reference set) reference set of DMU, denoted by E, is defined as:

E, = {DMU]-|]'(—:{1, ., N}& A{ > 0 in some optimal solution (6*,1*,s7*,s1*) of Model (3)}.
Theorem 1. The DMUs in E, are BCC-efficient.

Proof: see [4].

Definition 4. (extreme BCC-efficient) DMUj, is extreme BCC-efficient if only if E, = {DMU,}.
Theorem 2. If DMU,, be extreme BCC-efficient, then DMU, is BCC-efficient

Proof: see [4].

Theorem 3. DMU, is extreme BCC-efficient iff has an optimal objective function valve of one.
min 0—¢ Z A,

j#o
n

)\]'Xi]' + Si_ = Bxio ,i = 1, e, IM,

j=1
) ®)
t Zliyrj—5§=yro =15,
S. L =
n
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Proof: let DMU, not be extreme BCC-efficient. Then, there exists an optimal solution (8%, A%, s*~,s**) of Mode/
(2) such that 2 4] > 0(j # o). Also, since (8,A = (A4, ..., Ay)) is a feasible solution to Mode/ (4), where 8 = 1,

A = 0@ # 0),A, = 1, thus 0" < 1. Therefore 8" — £ ¥, A" < 1. Let the solution objective function valve of
Model (2) and (4) is less one, and let (8, 1) is an optimal solution of the model, then either 8 < 1 or (8 = 1 and
Z#OXJ > 0). If 8 < 1, DMU, isn't extreme BCC-efficient. If 8 = 1 and Zjioj\: > 0, then either (§7,5%) #
(0,00 or (57,5%)=(0,0), where § =8,x,— XL Ax;, and §* =31 Ay;—yo. If (37,5%) = (0,0),
since(é,x,§_,§+) is a feasible solution of Mode/ (2), thus DMU, isn't BCC-efficient, therefore DMU, isn't
extreme BCC-efficient. If (§7,8%) = (0,0), then either (é, A5 §+) is an optimal solution of Mode/ (2) or isn't.
If (é, A§ §+) be an optimal solution of Mode/ (2), since Z]_n:l 7\]- > 0, thus DMU, isn't extreme BCC-efficient.

If (é, A5 §+) not be an optimal solution of Mode/ (2), then there exists an optimal solution(8%,A%,s*7,s**) of
Model (2) such that 8* = 1 and (s*7,s**) # (0,0), thus DMU, isn't extreme BCC-efficient.

3 | Efficiency Analysis of DMUs based Separation Hyperplanes in PPS
with Variable Return to Scale Technology

Definition 5. Let A, € R™*S*1 he

Ay, = {(u,v,ugy, Vo) |UeR® & VER™ & u,eR*°& v, eRZ°& (u,v) = (0,0)}.

©)
We define a map f,: A, - NU{0}
by
fo(u,v,uqy,vy) = |{DMU]-|je{1,2, ...,n}&vtxj +v, = utyj + u0}|, ™

whete A, defined by Eq. (6).

Definition 6. Let (01, V, U,, ¥, )eA,. We say (4, V,U,, V,) is relatively best weight in input-oriented (in output-
oriented) in A, for DMU,, if

V%, + vy = Uy, + u& V'x, > 0 (U'y, > 0),
and

forall (u,v,u,,Vv,) ((u, V,Ug, Vo )EA: & ViXo > 0 (u'y, > 0) & vix, + v, = u'y, +u, =

fv(ﬁ' v, Uy, ‘70) = fv(u» V, Up, Vo))-

Definition 7. Let (T, V, Uy, V,)€eA,. We say (T, V, U,, V,,) is relatively best weight in A, for DMU,, if
V%, + vy = Uy, + Uy & V%, > 0 & Uy, > 0.
And

forall (u,v,u,,vo)((W,V, g, Vo)eAL & Viky + Vo = Uy, + u,& Vi, > 0 & Ty, > 0

= £,(4,V,U,, Vo) = £, (0, v,u,v,)).

Definition 8. Let (4, ¥,U,, V,)eA,. We say (1,7, U,, ¥,) is best weight in A, for DMU,, if

V%, + v = Uy, + ue& (TG, V) > (0,0).
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Definition 9. Let (T,V,T,, V,)eA,. We say (u,v,u,,V,) is relatively strongest weight in input-otriented (in
output-oriented) in A, for DMU,, if

V%, + v, = Uy, + u& Vix, > 0 (Tty, > 0) & g, (T, V,10,,7,) = 1,

and
forall (u,v,u, vo)((u, v, Up, Vo)eAy & vk, > 0 (u'y, > 0) & vix, + v, = u'y, + U,

= g,(T,7,T, ) = 8v(U,v, U, V,)).
Definition 10. Let (T, 7, U,, Vo)eA.. We say (T, V, U, V,) is relatively strongest weight in A, for DMU,, if
V%o + Vo = Uy, + Ug& VX, > 0 & Uy, > 0 & g, (T, 7V, Uy, Vo) = 1,
and

forall (u,v,ue,vo)((u,v,ue, Vo)eAy & Vixy > 0 uty, > 0 & vk, + v, = uly, + U, =

gv(0,9,Uo, Vo) = gy(U,v, U4, V).

Remark 1. Since x; and y;j are semipositive, it follows }}_; yro > 0, X% Xjo > 0. Now if YP_1yro = XiZ4 Xio,
by taking vt = (1,..,1)eR™, ut = (1,...,1)eR®, u, =0 and v, =0, if ¥3_;y., >I0 %, by taking a =
S
(Zr:ly”’/zm 1 u' = a(l,..,1)eRs, vt =a(l,..,1)eR™, u, =0 and v, =0, and finally if Y5y, <
i=1“io
m
Y2, Xjo, by taking B = (Zi:1 Xi"/zs y ), ut = B(1,...,1)eRs, vt = B(1,...,DeR™ u, = 0 and v, = 0, We
r=1Jro
have v'x, + v, = u'y, + u,, v, > 0uty, >0, u>1g, v=> 1le.
This shows that there is not any relatively strongest weight in input-oriented (in output-oriented) in A, for
DMU, if
forall (u,v,ue,ve)((W,v, Uy, Vo)eAy & VX, > 0 (uly, > 0) & vix, + vy = u'y, + U, =
g,(u,v,u,,vy) = O).
And there is not any relatively strongest weight in A, for DMU,, if
forall (u,v,ue,vo)((W,V, Uy, Vo)A, & VX, > 0 uty, > 0 & vix, + v, = uly, +u, =

g,(u,v,u,,vy) = 0).

Also there is not any strongest weight in A, for DMU, if

forall (u,v, uo,vo)((u, V,Ug, Vo)EA: & (u,v) > (0,0) & v'x, + v, = u'y, + u, =
g,(u,v,u,,vy) = 0).
Definition 10 (input-oriented (output-oriented) A -efficiency). If (4, V,1,, ¥,) be relatively best weight in
input-oriented (output-oriented) in A, for DMU,, , then
input-oriented (output-oriented) Ay-efficiency of

D MUO — fy (ﬁ,V;lﬁo,Vo)



Efficiency analysis of DMUs based separation hyperplanes in PPS with ... 68

Definition 11 (input-oriented (output-oriented) A -efficient). DMU,, is said to be in input-oriented (in
output-oriented) Ay-efficient if input-oriented (output-oriented) A.-efficiency of DMU, = 1.

Definition 12 (A -efficiency). If (T, V, U,, V,) be relatively best weight in A, for DMU,, then efficiency

Ao = fy(Wv,u,,V,)
2 n '

Definition 13 (Ay-efficient). DMU, is said to be Ay-efficient if A -efficiency = 1.

Definition 14 (strictly A-efficiency). If (0,7,1,,V,) be best weight in Ay, for DMU, then strictly A,-

_ K@vu,,¥o)

efficiency
n

Definition 15 (strictly Ay-efficient). DMU, is said to be strictly Ay-efficient if strictly Ay-efficiency of DMU,,
=1

Definition 16 (input-oriented (output-oriented) strongly A -efficiency). If there is a (U,V,U,,V,)
relatively strongest weight in input-oriented (output-oriented) in A, for DMU,, then input-oriented (output-
oriented) strongly Ay-efficiency = LUCAA)

n-1

Definition 17. If there is not any relatively strongest weight in input-oriented (output-oriented) in A, for
DMU,, then input-oriented (output-oriented) strongly A-efficiency = 0.

Definition 18 (input-oriented (output-oriented) strongly A,-efficient). DMU, is said to be input-oriented
(output-oriented) strongly Ay -efficient if input-oriented (output-oriented)strongly Ay -efficiency of DMU, = 1.

Definition 19 (strongly A -efficiency). If there is a (4, V, Uy, V) relatively strongest weight in A, for DMU,

Then strongly Ay -efficiency = £v(0.%.00.70)

n-1
Definition 20. If there is not any relatively strongest weight in A, for DMU,, then strongly A, -efficiency = 0.

Definition 21 (strongly A-efficient). DMUj, is said to be strongly Ay-efficient if strongly Ay-efficiency of
DMU,=1.

Proposition 1. Let (U, ¥, U,, V,) be relatively best weight in input-oriented (output-otiented) in Ay for DMU,,
and let (7, v) > (0,0). Then (4,V,1,,7,) is best weight in A, for DMU,,.

Proof: if (4,¥,U,, V,) not be best weight in A, for DMU,, then by Definition 7, there is some (4, ¥, Uy, Vo) €A,
such that (4, ¥) > (0,0), ¥'x, + ¥V, = Gy, + @i, and £,(4,V,0,,V,) < f, (@, 7,1, V,). On the other hand, since
x; and y;j are semipositive, ¥'x, + ¥, > 0 (i'y, + @, > 0). Therefore, noting that (4,7, U, V,) is relatively best
weight in input-oriented (output-oriented) in A. for DMU,,.f,(0,¥,1,,¥,) = f,(&,¥ 1, ¥,) which is
contradiction with this fact that f,(4,V,U,,V,) < f,(, ¥, 1, ¥,). Thus (4, 7,U,,V,) is best weight in A, for
DMU,.

Proposition 2. If (4,V,1,,V,) be relatively best weight in A, for DMU,, and if (4,¥) > (0,0). Then
(U, V,U,, V,) is best weight in A, for DMU,,.

Proof: similar to the proof of Proposition 1.

Proposition 3. If there is a (U, V,U,, V,) relatively strongest weight in input-oriented (output-oriented) in A,
for DMU,, and if @'y, > 0 (¥'x, > 0). Then (T, ¥, T,, V,) is relatively best weight in A, for DMU,,.

Proof: if (U,V, Uy, V) be relatively strongest weight in input-oriented (output-oriented) in A, for DMU,, and
if aty, > 0 (v'x, > 0), then

forall (u,v,u,,ve)((W,V, Uy, Vo)eA, & VX, > 0 (uly, > 0) & v, + v, = u'y, + U, =

gv(T,9, Ty, Vo) = gy(U,V,u4,V,)). ®)
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Now we assume (@i, ¥, T, ¥, ) €A, be relatively best weight in A, for DMU,, then

%, >0, Uy, >0, ¥'x, + ¥, = 'y, + 0,

and

f, (U, v, U,,V,) < f,(4,7, Ty, V).

)
Also, by Eg. (8), we have
gv(1,9,1,,75) = gy(T, 9,15, Vo). (10)
On the other hand, by Defnition 1 and Definition 2, we have
£y (0¥, 05, Vo) = gy(T, 7, T, Vo),
and
£y (8,9, 00, Vo) = gv(T, ¥, T, Vo) 1)

By Egs. (1)-(4), we have
£, (WY, Uo, Vo) = £,(§, 7,85, V) = gy(0,V, Uy, Vo) = gy(4, 7, Uy, Vo).
Thus (4, V, Uy, V,,) is relatively best weight in A, for DMU,.

Proposition 4. If there is a (4, ¥, U,, V,) relatively strongest weight in input-oriented (output-oriented) in A,
for DMU,, and if @'y, > 0 (¥'x, > 0). Then (T, ¥, U, V,,) is relatively strongest weight in A, for DMU,,.

Proof: similar to the proof of Proposition 3.

Proposition 5. If there is a (T, V, U,, V,,) relatively strongest weight in input-oriented (output-oriented) in A,
for DMU,, and if (4, ¥) > (0,0), Then (U, V, U,, V,) is strongest weight in A, for DMU,,.

Proof: Similar to the proof of Proposition 3.

Proposition 6. If there is a (T, V, U, V,,) relatively strongest weight in A, for DMU,,, and if (@, ¥) > (0,0), Then
(U, V,U,, V,) is strongest weight in A, for DMU,,.

Proof: Similar to the proof of Proposition 3.

Theorem 1. Let (4,7, T,, ¥,) be relatively best weight in input-oriented (output-oriented) in A, for DMU,, let
p= fv(ﬁl \_7; ﬁo, \_70) let

{DMU, .., DMU; } = {DMUje(1, ..., n}&tx; + 7, > Tty; + o}, (12)

and let t = (t, ..., t,) with

{o, jeliv 0 iph

1, jefl, .,n} = {j, - dp)- 13)

Then (4, ¥, ,, V,, t) is an optimal solution of the following model:
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n

min Z t;,

j=1

v, + v, — (uly, +uy) =0, vix, = ¢ (uly, = ¢),
s.t. Vi + v, — (u'yj+u,) + Mt 2 0, forall j (M > 0),

u=0, v=0,u,=0,v, =0, tje{0,1}.

Conversely, if (1, ¥, T, ¥, T) be an optimal solution of Mode/ (4), then (1, ¥, T,, ¥, is a relatively best weight in
input-oriented (output-oriented) in A, for DMU,,.

Proof: since (4, V,U,, V,) is a relatively best weight in input-oriented (output-oriented) in A, for DMU,, then,
by Egs. (5) and (6), (4, ¥,T,, V,, t) is a feasible solution of Mode/ (4). On the other hand, since (4, ¥, ,, ¥,, t) is
an optimal solution for Mode/ (4), we have n — YL, f]- >n — YL, j, therefore £, (4, ¥, U, %) = £, (0,7, Uo, Vo).
Also f.(T, ¥, T,, %,) < f.(4,V,1,, V,), since (1, V) is relatively best weight in input-oriented (output-oriented) in
A, for DMU,,.

Hence,

f, (T, ¥, 1y, Vo) = f,(0,V,10,,V,) =n — Z}Ll f]- =n-— Z}Llfj.

Thus (T, 7, Uy, Vo, t) is an optimal solution to Mode/ (4), and (1, ¥,1,, V,) is relatively best weight in input-
oriented (output-oriented) in A, for DMU,,.

Theorem 2. Let (4, ¥, 1, ¥,, t) be an optimal solution of the following model:

t:

min j»

n
=1
v, + v, — (uly, +u,) =0, vix, =1 (uly, = 1), (14)
s.t. Vi + v, — (ulyj+u,) + Mt; =0, forall j (M > 0),
u=0, v=0,u,=0, v, =0, tje{0,1}.

Then (4, ¥,U,, V,) is relatively best weight in input-oriented (output-oriented) in A, for DMU,,.

Proof: let (1, 7,1, ¥,) be relatively best weight in input-oriented (output-oriented) in A, for DMU,, let
p = fC(ﬁl vl ﬁOI ‘70)' lCt

{DMU;,, ..., DMU; } = {(DMU;fje(1, ..., n}&Ftx; + ¥, > ty; + G},

Then

V%, + ¥, = tty, + 10, V%, > 0 (Tty, > 0).

So that by taking k = ¥'x, (k = 0'y), 0 = 8/}, 9 = ¥/, 4, = "/}, and 9, = 70/, we have

V%, > 0 (', > 0), (@,9) = (0,0), V%, + ¥, = (U'y, + 1,), V%, + Vo —
(0%, +0,) = 0,i=1,...,p. (15)

Thus (4,9, 0y, 9,, t) is a feasible solution for Mode/ (15), where t = (i, ..., t,) with

. _{0 jeljs, wrip}-
t=

1 jefl,..,n} = {js, rip}

Thetefore, sine (U, ¥, Uy, Vo, T) is an optimal solution for Mode/ (5), n — st fj <n-— Xt Hence
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fC(ﬁ’ ‘7, ﬁO’ ‘70) S fc(l_lp ‘_]l 1_10,‘_]0)- (16)
Also by Model (15)
(@, 7, T, Vo) < £,(0,9, 05, 9,). 17)

On the other hand, since (@i, ¥, 1,, ¥,) is relatively best weight in input-otiented (output-oriented) in A, for
DMU, and

%, + ¥, = Ty, + iy, V%, > 0 (Tity, > 0).

We have

£(T,, o, ¥o) = £e(T, 7, Uo, Vo). a18)
Thus, by Models (16)18),

f.(4,¥, Uy, V) = (1,7, 1U,, Vy),

Therefore (4, ¥, Uy, V,) is relatively best weight in input-oriented (output-oriented) in A, for DMU,,.
Corollary 1. Let (4, V, U,, ¥,) be an optimal solution of Mode/ (5), then

input-oriented (output-oriented) Ay -efficiency of

—— —  — n Iy
DMUO - f.(@V,u,,vo) _ H—ijltj.

n

Proof: Theorem 2.

Corollary 2. DMU,, is input-oriented (output-oriented) Ay-efficient if only if the optimal objective function
value of Model (5) is zero.

Proof: Theorem 2.

Corollary 3. If there is some optimal solution(T, ¥, Uy, V) for Mode/ (5) such that v'x, > 0 (@'y, > 0), then
(W, Vv, U,, V,) is relatively best weight in A, for DMUL,.

Proof: Proposition 1 and Theorem 2.

Corollary 4. If there is some optimal solution(,V,U,,V,) for Mode/ (5) such that (4, %) > (0,0), then
(W, V,U,, V,) is best weight in A, for DMU,,.

Proof: Proposition 2 and Theorem 2.

Corollary 5. If there is some optimal solution(T, V,t) for Mode/ (2) such that (G,¥) > (0,0), and ¥, t; = 0,
then DMU, is strictly A -efficient.

Proof: Proposition 1 and Theorem 2.

Theorem 3. Let (4, ¥, U, ¥, t) be an optimal solution of the following model:

t.

min s

-

-+ =

]:

v, + v, — (uty, +u,) =0, vix, >¢ uly, >,

s.t. Vi + v, — (ulyj+u,) + Mt; =0, forall j (M > 0),
u=0, v=0,u,=0,v,=>0, t]-e{O,l}.

Then (@i, ¥, U,, V,,) 1s a relatively best weight in A, for DMU,
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Conversely, let (U, ¥, U,, V,) be relatively best weight in A, for DMU,, Then (T, V, U,, V,, t), where t is defined
by Models (5) and (6) is an optimal solution of Mode/ (3).

Proof: similar to the proof of Theoren 1.

Theorem 4. Let (T, V, Uy, Vo, t) be an optimal solution of the following model:
n
min Z t;,
j=1
v, + vy — (uly, +u,) =0, vix, > 1, uty, >1,

s.t. Vi + v, — (u'yj+u,) + Mt 2 0, forall j (M > 0),
u=0, v=0,u,=0,v, =0, tje{0,1}.

Then (U, V, Uy, V,) 1s relatively best weight in input-oriented (output-oriented) in A, for DMU,,.
Proof: similar to the proof of Theorem 2.

Corollary 6. Let (T, V, Uy, V,) be an optimal solution of Mode/ (4), then A, -efficiency of

— —— — n F
fcWVULV,) n-Yi 1 4
p—

DMU, =

Proof: Theoren 4.
Corollary 7. DMU, is A,-efficient if only if the optimal objective function value of Mode/ (4) is zero.
Proof: Theorem 4.

Corollary 8. If there is some optimal solution(u,V,U,,V,) for Mode/ (4) such that (4,¥) > (0,0), then
(W, V,U,, V,) is best weight in A, for DMU,,.

Proof: Proposition 2 and Theorem 4.

Corollary 9. If there is some optimal solution(u, v,t) for Mode/ (5) such that (4,v) > (0,0), and ¥, t; = 0,
then DMU, is strictly A -efficient.

Proof: Proposition 1 and Theorem 4.

Theorem 5. Let (4, ¥, U,, ¥, t) be an optimal solution of the following model:

n

min th,
=1
vix, + v, — (uty, +uy) =0,

s.t. VX + v — (u'y; +u,) + Mt; =0, forallj (M>»0),
u=>1leg v>1g,u, =0, v, =0, t]-e{O,l}.

Then (1, %, U,, ¥,) is a relatively best weight in A, for DMU,,.

Conversely let (T, V, Uy, V,) be best weight in A, for DMU,. Then (4, ¥, Uy, V,, t), where t is defined by Models
(5) and (6), is an optimal solution of Mode/ (5).

Proof: by Remark 1 there is a (u,v, Uy, V,)€A, such that

viX, + vy = uly, +u,, u=>1g, v 1e

Thus (u, v, uy, Vo, t), where t is defined by Models (5) and (6), is a solution feasible for Model (6).

Let (T, ¥, Uy, V) be best weight in A, for DMU,, let p = f.(T, V, U,, V,,), and let
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{DMU;,, ..., DMU; } = {(DMU;fje(1, ..., n}&vtx, > Tty,},

Then

(@) > (0,0), V%o + Vo = Uy, + To, ¥'x, + Vo — (Aly}, +To) 20, i=1,...,p.

Thus by taking k = min {min{ﬁr} , m_in{\_/i}} we have

(@ V) = k(L1), %, + 7, = Uy, + Uy, V'xj, + Vo — (U'y;, + ) = 0,i =1,...,p.

Thus (T, V, Uy, ¥,, t), where tis defined by Mode/ (6) is a feasible solution for Mode/ (5), and since (&, ¥, Ty, ¥, )
is an optimal solution of the model, therefore n — Z}‘zl Ej >n-— Zjnzl t;. Hence

f (1,9, iy, Vo, ©) = £ (0,7, U, 7o),

Also

f. (0,7, Ty, Vo, ©) < £.(T,7, Ty, V,),

Since (4, V, U,, V,) is a best weight in A, for DMU,,. Thus

f.(4,V, 0y, Vo, 1) = £.(4,V,Ug, V,) =n — Z]_n=1 f]- =n-— Zjnzlf]-.

It follows that also (@, 7, iy, Vo, t) is best weight in A, for DMU,, and (4,7, U,, V,) is an optimal solution of
Model (5).

Theorem 6. Let (U, V,U,, ¥,, t) be an optimal solution of the following model:

t:

min j»

-

o+ =

]:

v, + vy — (uty, +uy) =0,

s.t. Vi + v — (ulyj+u,) + Mt; =0, forall j (M > 0),
u=z1, v>1u,20, v, =0, tje{0,1}.

Then (U, V, Uy, V,) is best weight in input-oriented (output-oriented) in A, for DMU,.
Proof: similar to the proof of Theorem 5.

Corollary 10. Let (T, V, U,, V,,) be an optimal solution of Mode/ (6), then strictly Ay -efficiency of

—_— fv(ﬁrvrﬁOlvo) — n_z;;l f]

DMU,

n
Proof: Theorem 6.
Corollary 11. DMUj is strictly A,-efficient if only if the optimal objective function value of Mode/ (6) be zero.
Proof: Theorem 6.

Theorem 7. Let (4, ¥, ,, ¥, t) be an optimal solution for the following model:
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min Z t,

j#o

v, + vy — (Uly, + uy) = 0,vix, = £ (uly, = ),
s.t. VX +ve— (ulyj+up) + Mt =g jEo(M>»0),

u=>0 v=>0, t]-e{O,l},j #* 0,
where t = (£, ..., to-1, Tos1s s En). Then if Xy o § <n — 1, (G, ¥, T, ¥, ) is a relatively strongest weight in input-
oriented (output-oriented) in A. for DMU,. But if ¥, = n — 1, there is not any relatively strongest weight
in input-oriented (output-oriented)in A. for DMU,. Conversely if there is not any relatively strongest weight
in input-oriented (output-oriented) in A, for DMU,, then the optimal objective function value of Mode/ (7) is
equal to n — 1. But if there exists a (@i, V, Uy, Vo )€A, such that (4, V,U,, V,) is relatively strongest weight in
input-oriented (output-oriented) in A, for DMU,, then by taking p = g, (4, v, U,, V),

{DMU;,, ..., DMU; } = {DMU; [je(1, ..., n} & Vi) + ¥ > Tty; + o} 19)
And
t= (fp ---'fo—1'fo+1' ---'En)-
With
£ = {0, .je{jl, s Jp) | |
1, je{1,...,n} — {]1, s po o}. (20)

(W, V, Uy, Vo, ) is an optimal solution for Mode/ (§) and ¥j.ot; < n — 1.

Proof: if there is a (4,V,1,, V,)€eA, such that (4,V,U,,V,) is relatively strongest weight in input-oriented
(output-otiented) in A, for DMU,, then g, (0,7, U,, ¥,) = 1 and (T, V, Uy, V,, t), where t is defined by Models (17)
and (72), is a feasible solution for Mode/ (7). Thus, since (1, ¥, T, ¥,, t) is an optimal solution for Mode/ (7), we
haveY.o tj < ¥z tj. Therefore,

gV(ﬁ' ‘7' l‘~'i0"‘70) 2 gV(ﬁi ‘7' ﬁOt ‘_]O) 2 1

Thus the optimal objective function value of Mode/ (7) is less n — 1. On the other hand, g (4,7, 1,, ¥,) <
g.(U, v, Uy, V,), since (U, V, Uy, V) is relatively strongest weight in A, for DMU,,. Consequently, g. (8, ¥, Ty, ¥,) =
g.(1,v,1,,V,). Thus (T, V, Uy, V,, t) is an optimal solution for Mode/ (7), and (@i, ¥, {i,, ¥,) is a relatively strongest
weight in input-oriented (output-oriented in A, for DMU,. Also it easy to show, if there is not any relatively
strongest weight in input-oriented (output-oriented in A, for DMU,, then the optimal objective function value
of Model (7) is equal to n — 1.

Theorem 8. Let (4, ¥, U, ¥, t) be an optimal solution for the following model,

min th,

j%0

vix, + vy — (Uly, +uy) = 0,vix, = 1 (uly, = 1),
st VX Ve — (utyjug) + My =1, jEo (M>»0),

u=0, v=0, tje{0,1},j # o,

where t = (&, ..., To-1, Tos1, -, Tn). Then if X0 § <n — 1, (4, 9, T, ¥,) is a relatively strongest weight in input-
oriented (output-oriented) in A, for DMU,. But if ¥, f; = n — 1, there is not any relatively strongest weight

in input-oriented (output-oriented)in A, for DMU,,.

Proof: similar to the proof of Theoren: 7.
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Corollary 12. let (T, ¥, U,, V,,) be an optimal solution of Mode/ (§), then

input-oriented (output-oriented) Ay-efficiency of,

_ gv(ﬁ"—"ﬁo-vo) (n_l)_Z' ol
DMU, = — = n_11= ]

Proof: Theorem 8.

Corollary 13. DMU, is input-oriented (output-oriented) A, -efficient if only if the optimal objective function
value of Model (6) is zero.

Proof: Theorem 8.

Theorem 9. Let (4, ¥, U, ¥,, t) be an optimal solution for the following model:

min Z t;,

j#o
v + vy — (Uly, +uy) = 0,vix, = g,uly, > ¢,
s.t. VX + v — (ulyj+ug) + Mt =g j#o(M>»0),

u=0, v=0, tje{0,1},j # o,
where T = (&, ..., T-1, Tos1, -, En). Then if Yo §j <n—1, (4,7,1,,¥,) is a relatively strongest weight in A,
for DMU,. But if };.,t = n — 1, there is not any relatively strongest weight in A, for DMU,. Conversely if
there is not any relatively strongest weight in A for DMU,, then the optimal objective function value of Mode/
(9) is equal to n — 1. But if there exists a (U, ¥, Uy, Vo )€A, such that (T, V, U,, V,) is relatively strongest weight
in Ay for DMU,, then (T, V, Uy, V,, t), whete t is defined by Mode/s (10) and (77), is an optimal solution for Mode/
(9) and Yoty <n —1.

Proof: similar to the proof of Theoren: 7.
Theorem 10. Let (&, ¥, T,, ¥, t) be an optimal solution for the following model,
min Z Y,
j#o
vixy + vy — (Uty, +uy) = 0,vix, = 1,uly, > 1,
s.t. Vi + v, — (ulyj+u,) + Mt =1, j#o0(M>»0),
u=0, v=0, tef0,1},j # o.

where t = (£, ..., to—1, Tos1, oo, tn). Then if 3§ <n —1, (G, ¥, 8y, ¥,) is a relatively strongest weight in A,
for DMU,,. But if };., fj = n — 1, there is not any relatively strongest weight in A, for DMU,,.

Proof: similar to the proof of Theoren: 7.

Corollary 14. let (4, ¥, 1,, ¥,) be an optimal solution of Mode/ (10), then

strongly Ay-efficiency of,

S =Yt
DMUO = gv(u:’_ulovvo) — (n I)l_zlliotll

Proof: Theorem 10.

Corollary 14. DMU, is strongly A,-efficient if only if the optimal objective function value of Mode/ (10) be
zero.

Theorem 11. Let (4, V, i, Vo, ) be an optimal solution for the following model:
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min Z t,

j*o

v, + vy — (uty, +uy) =0,
s.t. Vi + v, — (Ulyj+u,) + Mt =g j# 0 (M>0),

u>1g, v > 1s t]-e{O,l},j * 0,
where t = (£, ..., to—1, fos1, -on En). Then if 3o § <n — 1, (G, ¥, @, ¥,) is a strongest weight) in A, for DMU,,.
But if ¥, t; = n — 1, there is not any in A. for DMU,. Conversely if there is not any strongest weight in A,
for DMU,, then the optimal objective function value of Mode/ (17) is equal to n — 1. But if there exists a
(U, V, 0y, Vo)eA, such that (T,7,T,,7,) is strongest weight in A, for DMU,, then (T,V,1,, V,, t), where t is
defined by Models (11) and (72), is an optimal solution for Mode/ (17) and ¥jot; <n — 1.

Proof: similar to the proof of Theoren: 7.

Theorem 12. Let (4,7, iy, Vo, t) be an optimal solution for the following model,
min Z t;,
j#o
v, + v, — (uty, +u,) =0,
s.t. VX +ve— (ulyj+u) + Mt =1, j#o (M>»0),
u=1, v=>1, te{0,1},j # o,

where t = (ty, ..., Eo—1, To41, o, En). Then if Yo f; <n—1, (&, 7,1, ¥,) is strongest weight in A, for DMU,,.
Butif Y., f; = n — 1, there is not any strongest weight in A, for DMU,,.
Proo: similar to the proof of Theorem 7.

Theorem 13. DMU, is input oriented (output oriented) A -efficient if only if DMU,, is input oriented BCC
efficient.

Proof: let DMU, be input oriented Ac-efficient, then, by Corollary 2, the optimal objective function value of
Model (5) is zero. Thus letting (T, V, Uy, V,, t) be an optimal solution for Mode/ (5), we have
020,920, %+ 7, = Uy, + o, V%, = 1(@'yo = 1), V') + 7, — (U'y; + o) =

0, j=1,..,n

Hence (U,V,W,), where W, = U, — ¥,, is an optimal solution for Mode/ (2). therefore DMU,, is input oriented
(output oriented) BCC - efficient. Conversely, let DMU,, is input oriented (output oriented) BCC - efficient,
and let (4, ¥, T,, ¥,) is an optimal solution of Mode/ (2), then
020720, o= Uy, +Wo V% = 1(lyo = 1), 9% — (i) +W,) 20, |
=1,..,n,
Thus (G, ¥, 0, ¥,, T), where
_ (W, W, 20,
Yo=10 w,<0,
_ {0 W, =0,

Vo =1 ~ ~
W, W,<0.

and t = 0eR", is a feasible solution for Mode/ (2). Therefore the optimal objective function value of Mode/ (5)
is zero. Hence, by Corollary 2, DMUj is input oriented (output oriented) A-efficient.
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Theorem 14. If DMU,, be A.- efficient, then DMUj, is both input oriented BCC - efficient. and output oriented
BCC — efficient.

Proof: let DMU,, is A- efficient. Then, by Corvllary 6, the optimal objective function value Mode/ (7) is zero,
thus letting (T, V, U,, ¥,, t) be an optimal solution for the model, we have

020,V=20, V%, +7, = Uy, +1,, V%, 21, Ty, 21, 7%+ 7, — (O'y; +T,) =
0, j=1,..,n

So that by takingk = v'x,, 0 = (ﬁ/k),and v = (‘_’/k), we have

020,720, 9%, + 7o = Uy, + o, 7%, =1, ¥ + ¥, — (ily; + Go) 20, j=1,..,n

Thus (4,7, W,), where W, = @i, — ¥, is a feasible solution for Mode/ (4), and since ¥'x, = 1 it follows that the
optimal objective function value of Mode/ (4) is equal to one. Hence DMUj, is input oriented BCC - efficient.
Similarly, we can show that DMUj is output oriented BCC — efficient.

Theorem 15. DMU, is strictly A,- efficient if only if DMU, is BCC - efficient.

Proof: let DMU, is strictly Ay- efficient. Then, by Corvllary 6, the optimal objective function value Mode/ (7) is
zero, thus letting (@1, V, U,, ¥, t) be an optimal solution for the model, we have

021,21, V%, +V, = Uy, + T, VX +7V, — (@y; +T,) 20, j=1,..,n

Thus (4, V, W, ), where W, = U, — V,, is a feasible solution for the following model
min V%o — (u'yo + Wo),
s.t. xj — (u'yj + Wo) = 0 forall

u=>1 v=>1,

which for the feasible solution the objective function value of the model is equal to zero. Therefore the
optimal objective function value Mode/ (9) is zero. Therefore, by strong duality theorem, the optimal objective
function value of the following model,

m S
— +,
max Z Si + Z Sp
i r=1

i=1
n

Z}\'Xi]‘ + S'_ = Xjo for all i,

S.t.
Z AjYij — Sr = ¥ro forall r,
;20,57 2

0,sf =0 forall j,forall i,forall r,

which is dual form of Mode/ (9), equal to one. Consequently DMU,, is BCC — efficient. It is easy to show that
if DMU,, is BCC — efficient, then DMUj, is strictly A, - efficient.

Theorem 16. DMU,, is input oriented strongly A- efficient if only if DMUj, is extreme BCC - efficient.

Proof: let DMU,, be input oriented strongly A.- efficient. Then, by Corollary 3.8, the optimal objective function
value Model (8 ) is zero, thus letting (T, V, Uy, V,, t) be an optimal solution for the model, whete

t= (- Tom1, Torps oo, Tn) = 0€R™,
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we have

020V=20,T,20, Vo 20, 7%, 21, ¥, + 7, = Uy, +U,, Vx5 + 7, — (T'y; +
i,)=1, j#o.

Thus (T, V, W,), where W, = U, — V,, is a feasible solution for the following model
min v, — (uly, + w,),
vix, — (uty, + wy) =0,

St vix — (u'yj+w,) =1%o,

vix, =1,
u=0, v=0,w,is free.

Therefore, by strong duality theorem, the optimal objective function value of the following model

max 6+£Zk-,

j#o

n
z}\]X] + GXO < XO,
j=1

n
st 27\1}’1 2 Yo,
.t =

n
j=1

A; =0, forall j,

which is dual form of Mode/ (9), equal to one. Hence, by Theorews 2, DMU,, is extreme BCC-efficient.
Conversely, if DMU,, is extreme BCC-efficient, by Theorenz 2 and Corollary 8, DMUj, is input oriented strongly
A.- efficient.

4| Summary and Conclusion

In Section 3, we provided models to obtain non negative weights for inputs, nonnegative weights for outputs,
a nonnegative scalar corresponding to inputs and a nonnegative scalar corresponding to outputs which for
the weights and scalars, the number of which DMUs for each one its virtual output in addition to the scalar
corresponding to inputs does not exceed (is less than, if any) its virtual input in addition to the scalar
corresponding to inputs be maximum, provided that for DMU under evaluation, the virtual output in addition
to the scalar corresponding to inputs does not exceed (is less than, if any) the virtual input in addition to the
scalar corresponding to inputs and the virtual input will be positive. We called these weights and scalars, the
relatively best weight in input-oriented (the relatively strongest weight in input-oriented, if any) for the DMU
under evaluation, and if all of the weights be positive we called them best weight in input-oriented (the
strongest weight in input-oriented, if any) for the DMU under evaluation. The relatively best weight in input-
oriented (the relatively strongest weight in input-oriented) indicates normal vector of a superface in the PPS
with VRS assumption that the DMU under evaluation is on the superface and the maximum number of which
DMUs their performance are no worse than (is better than) the DMU under evaluation separate from the
rest of DMUs, with the constraint that the virtual input be positive. Accordingly, we can interpret the rest of
the definitions of non-negative weights for inputs and for outputs and nonnegative scalars related to inputs
and outputs. Also in this paper, we presented the relationship between these definitions of efficiency with
efficiency in the DEA models with VRS assumption. These normal vectors can be applied as a criterion for
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efficiency analysis and ranking of a set of peer DMUs with interval scale data. Specially, the relatively strongest
weight in input-oriented (in output-oriented), both indicate extreme CCR-efficiency and provide a
petformance measure DMU,, with interval scale inputs and/or outputs. Also the relatively strongest weight
and the strongest weight can be applied for ranking extreme CCR-efficient DMUs and BCC-inefficient
DMUs.
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