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1|Introduction    

DEA is a nonparametric approach with a structured mathematical programming framework. Using this 

technique, we assess the relative efficiency of homogeneous Decision-Making Units (DMUs) [1]. The higher 

the output and the lower the input of a DMU, the more favorable the performance assessment. However, in 

some situations, certain indicators considered as outputs may be achieved due to the way they are produced, 

even though their nature is such that they are undesirable, meaning the lower their values, the better. In real-

world practice, there might be both desirable and undesirable outputs. For example, air pollution is an 

undesirable output of the production process in various companies. There are several approaches to dealing 

with undesirable outputs, some of which are mentioned here. The simplest approach is to ignore them in the 
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evaluation process, but this may lead to misleading results [2]. Since smaller amounts of undesirable outputs 

are more desirable, some methods consider them as input indicators [3]. There are different approaches to 

treating them as outputs, and in this regard, some terminology has been proposed. The term "strong 

disposability of undesirable outputs" is used when they can be freely disposed of, while "weak disposability" 

is used when reducing their production depends on reducing the production of desirable outputs [4]. 

The first approach is based on the indirect method, initially proposed by Charnes et al. [1] and later modified 

by Seiford and Zhu [5]. This method incorporates undesirable outputs into efficiency assessment. In this 

method, Mis is assumed to be the maximum value of undesirable outputs, and the values of other undesirable 

outputs are evaluated by subtracting them from M. The second approach is based on the direct method, 

proposed by Chambers et al. [6] and later by Chung et al. [7]. Both approaches have significant limitations. 

The direct approach is limited by variations in the initial data, while the indirect approach faces issues such as 

exceeding the production possibility set and having a descending slope. Zanella et al. [8] proposed a new 

model derived from Shepherd et al. [9], which avoids the limitations of previous methods and evaluates 

efficiency in the presence of undesirable outputs using the Directional Distance Function (DDF). 

For example, Maghbouli et al. [10] evaluated the efficiency of 39 Spanish airports while considering 

undesirable outputs. Dang [11] proposed a complete ranking of DMUs with undesirable outputs. Khalili 

Damghani and Shahmir [12] evaluated the efficiency of electricity generation and distribution companies using 

undesirable outputs. Khoshandam et al. [13] proposed a method to determine final substitution rates in Data 

Envelopment Analysis (DEA) with undesirable outputs. Pishgar-Komleh et al. [14] used six approaches to 

assess the winter wheat cropping system in Poland: 1) ignoring undesirable outputs, 2) slack-based 

measurement DEA with undesirable outputs, 3) treating undesirable outputs as inputs in the DEA model, 4) 

impact rate, 5) data transformation, and 6) ratio model. Chambers et al. [15], [6] studied the relationship 

between directional technology, distance function, and profit function, and applied the directional technology 

distance function in various economic settings. Fare et al. [16] used the directional output distance function 

to model the joint production of good and bad outputs and the reduced disposability of bad outputs imposed 

by regulations in the utility industry. Portela et al. [17] proposed the Range Directional Model (RDM) for 

handling positive and negative data in DEA. Sahoo et al. [18] extended value-based models in a directional 

DEA framework to develop new directional cost- and revenue-based measures of efficiency in the banking 

industry. Lee and Choi [19] used non-radial DDF to evaluate greenhouse gas performance by decomposing 

technical efficiency into pure technical efficiency and scale efficiency. Yang et al. [20] developed a DEA-based 

DDF model to investigate the appropriate (or best) direction for measuring efficiency. Pastor et al. [21] 

introduced a new Malmquist productivity index by modifying the conventional DDF. 

The problem of allocating fixed costs often arises in real-world situations when multiple DMUs share a 

common platform. An example provided by Cook and Zhu [22] is the allocation of a manufacturer’s 

advertising costs to local retailers. Another example is the allocation of a bank’s joint television or newspaper 

advertising costs to its branches. The key challenge in allocating fixed costs is designing an optimal allocation 

plan to distribute the cost among multiple DMUs. So far, most DEA studies have focused on fixed cost 

allocation based on the efficiency conservation principle or the efficiency maximization principle. It should 

be noted that the efficiency of a DMU is defined here in relative terms, meaning it is measured in comparison 

to other DMUs. The efficiency conservation principle states that the efficiency of DMUs does not change 

before and after allocation. Cook and Kress [23] were the first to study fixed cost allocation using DEA. Their 

proposed method allocates costs by solving linear programming problems based on the efficiency 

conservation principle and the Pareto minimization principle. Lin [24] proved that the method proposed by 

Cook and Zhu [23] has no feasible solution under certain constraints. To achieve a feasible allocation scheme, 

Lin [24] improved Cook and Zhu’s [23] method and set output targets based on the fixed cost amount 

allocated to each DMU. Additionally, Lin [24] proposed a DEA method for cost allocation and joint revenue 

distribution among DMUs, reflecting the relative efficiency and input-output scale of the DMUs. The 

efficiency maximization principle states that the efficiency of all DMUs will improve after cost allocation. 
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  Beasley [25] presented the first cost allocation method based on this principle. Later, Si et al. [26] extended 

Beasley’s [25] work. Li et al. [27] proposed that each DMU should propose an allocation plan to penalize 

itself, ensuring the acceptance of the allocation plan. Considering the game relations in the allocation process, 

Li [28] proposed a collaborative game-based approach for cost allocation. To ensure the uniqueness of the 

allocation result, Chu et al. [29] defined the concept of utility for each DMU and obtained the cost allocation 

result by maximizing the minimum utility. Lin and Chen [30] allocated fixed costs as a complement to other 

cost inputs based on the DEA method, and this method was extended to two-stage systems by Zhu et al. 

[31]. Zhang et al. [32] combined game theory and DEA to solve the problem of transfer cost allocation. 

Considering the competitive and cooperative relationships between DMUs, Xu et al. [33] presented a unique 

cost allocation plan based on DEA from the perspective of inequality aversion. 

The main contribution of this paper is as follows: we present a fixed cost allocation plan in the presence of 

undesirable outputs. This plan based on the strategy of full-efficient mechanism. We considering fixed costs 

as a new input in the DDF DEA model. We propose an algorithm to determine the allocated cost to DMUs 

by considering all efficient and inefficient DMUs 

The structure of this paper is orgonized as follows: in the second section, we introduce the DDF model in 

DEA to consider the undesirable outputs. In the third section, we present a fixed cost allocation plan in the 

presence of undesirable outputs based on the DDF model. In the fourth section, we illustrate the results of 

the proposed approach with a numerical example, we propose the results of our research in the last section. 

2|DDF Approach to Treat Undesirable Outputs  

Let n DMUs as DMUj = (Xj, Uj, Yj). Each DMUj consumes input vector Xj = (x1j, … , xmj) ∈ R+
m   to produce 

Yj = (y1j, … , ysj) ∈ R+
s  as desirable output and Uj = (u1j, … , ulj) ∈ R+

l  as undesirable output. Chung et al. [6] 

proposed Model (1) by considering weak disposability of undesirable outputs for measuring of DMUo unit 

under evaluation as follows. 

In  Model (1), xij are the inputs used by the DMUj, j = 1, … n to produce yrj desirable outputs and ukj  

undesirable outputs. The vector g = (gi
x , gk

u, gr
y

, i = 1, … , m, k = 1, … , l,   r = 1, … , s) show direction of 

change of inputs, undesirable outputs and desirable outputs. The μjo is intensity variables. The factor βo show 

the extent of the DMU’s inefficiency. It corresponds to the maximal feasible expansion of desirable outputs 

and contraction of inputs and undesirable outputs that can be achieved simultaneously. 

It is obvious that always βo
∗ ≥ 0, if βo

∗ > 0 then DMUo is efficient; otherwise, DMUo is inefficient. The three 

commonly used predefined directions (input- oriented, output-oriented, and proportional) considered in this 

study. If we put g = (Xj, 0,0), then we have Model (1) in the input oriented, and the efficiency of DMUo is 

calculated as 1 − βo
∗ .  If we put g = (0, Uj, Yj), then we have Model (2) in the output oriented, and the efficiency 

of DMUo is calculated as  
1

1+βo
∗ . If we put g = (Xj, Uj, Yj), then we have Model (2) in the mix oriented, and the 

efficiency of DMUo is calculated as  1 − βo
∗ . It is obvious that always 0 < βo

∗ < 1. 

By selecting three direction namely g = (Xj, Uj, Yj) as proportional direction, the dual of Model (1), 

corresponding to the multiplier formulation,is shown in Model (2). 

βo
∗ = Max βo, 

s.t.    ∑ μjo
n
j=1 xij ≤ xio − βgi

x , i = 1, … , m,  

          ∑ μjo
n
j=1 ukj ≤ uko − βgk

u,  k = 1, … , l,  

          ∑ μjo
n
j=1 yrj ≥ yro + βgr

y
,  r = 1, … , s,                       

                 μjo ≥ 0, j = 1, … , n,  β free sign. 

(1) 
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Similar to the directional Model (1) the value of the objective function at the optimal solution to Model (2) 

corresponds to the maximal feasible improvement to the desirable and undesirable outputs that can be 

achieved simultaneously. 

3|Allocation of Fixed Costs with Undesirable Outputs based on the 

DDF Model 

Let we want to distribute a total fixed cost R among units. Each DMU is allocated a non-negative cost Rj such 

that ∑ Rj = Rn
j=1 , Rj ≥ 0, j = 1, … , n. The cost allocated to each DMUj is considered as a new input. To proceed, 

we would like to introduce how to resolve the fixed cost allocation problem based on Model (2).  

To ultimately identify such an allocation, following Beasley [25] and Li et al. [34], we can treat the allocated 

cost Rj as an additional input to DMUj. As such, the fixed cost allocation of DMUo can be determined by the 

Model (3). 

As can be seen in Model (3), the problem is nonlinear because of the term vm+1Rj. Let vm+1Rj = πj, j = 1, … n, 

Model (3) will be as follows: 

For each DMUo, one can solve Model (4) to determine its corresponding the fixed cost allocation score 

separately. Suppose (γr
∗, wk

∗ , vi
∗, vm+1

∗ , πj
∗, r = 1, … , s, k = 1, … , l, i = 1, … m) is an optimal sulotion of Model (4). 

Then the fixed cost allocation of DMUo for all DMUs can be determined Rj
∗ =

πj
∗

vm+1
∗ , j = 1, … . n. 

Theorem 1. There always exists a feasible (π1, … , πn) that the fixed cost allocation score of each DMUo 

determined by Model (4) is equal to unity, i.e., the the fixed cost allocation mechanism makes all DMUs 

efficient (also called full-efficient mechanism). 

Proof: We can prove Theorem 1 in an analogous way of Si et al. [26].  

Various preference objectives can be included to realize a more practical the fixed cost allocation scheme.  

We firstly normalize the input and output measures as follows: 

Let 

min − ∑ γr
s
r=1 yro + ∑ wk

l
k=1 uko + ∑ vi

m
i=1 xio,  

s. t.     ∑ wk
l
k=1 uko + ∑ vi

m
i=1 xio + ∑ wk

l
k=1 uko = 1, 

          ∑ wk
l
k=1 ukj − ∑ vi

m
i=1 xij − ∑ wk

l
k=1 ukj ≤ 0,    j = 1, … , n,                              

            γr ≥ 0, wk ≥ 0, vi ≥ 0,   i = 1, … , m,  k = 1, … , l,  r = 1, … , s. 

(2) 

min − ∑ γr
s
r=1 yro + ∑ wk

l
k=1 uko + ∑ vi

m
i=1 xio + vm+1Ro,  

s. t.     ∑ wk
l
k=1 uko + ∑ vi

m
i=1 xio + ∑ wk

l
k=1 uko + vm+1Ro = 1, 

          ∑ wk
l
k=1 ukj − ∑ vi

m
i=1 xij − ∑ wk

l
k=1 ukj − vm+1Rj ≤ 0,    j = 1, … , n,                              

          ∑ Rj = Rn
j=1 , Rj ≥ 0, j = 1, … , n, 

                 γr ≥ 0, wk ≥ 0, vi ≥ 0,   i = 1, … , m,  k = 1, … , l,  r = 1, … , s. 

(3) 

min − ∑ γr
s
r=1 yro + ∑ wk

l
k=1 uko + ∑ vi

m
i=1 xio + πo,  

s. t.     ∑ wk
l
k=1 uko + ∑ vi

m
i=1 xio + ∑ wk

l
k=1 uko + πo = 1, 

           ∑ wk
l
k=1 ukj − ∑ vi

m
i=1 xij − ∑ wk

l
k=1 ukj − πo ≤ 0,    j = 1, … , n,                                     

           ∑ πj = vm+1Rn
j=1 , πj ≥ 0, j = 1, … , n, vm+1 ≥ 0, 

                 γr ≥ 0, wk ≥ 0, vi ≥ 0,   i = 1, … , m,  k = 1, … , l,  r = 1, … , s. 

 

(4) 

x̂ij =
xij

∑ xij
m
i=1

, ûkj =
ukj

∑ ukj
l
k=1

,  ŷrj =
yrj

∑ yrj
s
r=1

.                          

 
  (5) 
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hat ρj can be interpreted as the proportion allocated to DMUj. However, the cost proportions assigned to 

each DMU may not always be fully satisfied. We put Rj
o = ρjR. Then Rj

o is represented as the preferential cost 

allocated to DMUj such that ∑ Rj
on

j=1 = R. To this end, we determine the final allocation scheme by introducing 

a set of deviation variables to minimize the total deviations of all DMUs. The following generalized allocation 

model can be formulated such that preferential information of each individual DMU are considered. 

We can linearization Model (7), for this goal, we put |πj − Rj
o| + πj − Rj

o = 2aj and |πj − Rj
o| − πj + Rj

o = 2bj, 

then ∑ (aj + bj)
n
j=1 ≤ 2R, then Model (7) can be easily reformulated as Model (8). 

We obtain fixed cost allocation plane by solving Model (8). To obtain the optimal solution from the previous 

models, we can inversely consider the change in the applied variables in the model. 

4|Numerical Illustration 

To show the results of the models presented in this paper for the fixed cost allocation scheme, we use a 

numerical example from previous DEA studies. This dataset including 12 DMUs, each consuming three 

inputs to produce two desirable outputs and one undesirable output. We assume that we want to allocate a 

fixed cost of 100 units among the DMUs.  

Table 1. Data set and the results of model (2). 

 

 

 

 

 

 

 

 

As can be seen, some DMU1, DMU4, DMU5, DMU8, DMU9 and DMU12 are efficient and others DMUs 

are inefficient based on the Model (2) and three direction. 

ρj =
(∑ x̂ij

m
i=1 )(∑ ûkj

l
k=1 )(∑ ŷrj

s
r=1 )

∑ ((∑ x̂ij
m
i=1 )(∑ ûkj

l
k=1 )(∑ ŷrj

s
r=1 ))n

j=1

 ,   j = 1, … , n.            (6) 

min  ∑ |πj − Rj
o|n

j=1 ,  

s. t.     ∑ wk
l
k=1 uko + ∑ vi

m
i=1 xio + ∑ wk

l
k=1 uko + πo = 1, 

          ∑ wk
l
k=1 ukj − ∑ vi

m
i=1 xij − ∑ wk

l
k=1 ukj − πj ≤ 0,    j = 1, … , n,                                     

          ∑ πj = vm+1Rn
j=1 , πj ≥ 0, j = 1, … , n, vm+1 ≥ 0, 

           γr ≥ 0, wk ≥ 0, vi ≥ 0,   i = 1, … , m,  k = 1, … , l,  r = 1, … , s. 

 

(7) 

min  ∑ (aj + bj)
n
j=1 ,  

s. t.     ∑ wk
l
k=1 uko + ∑ vi

m
i=1 xio + ∑ wk

l
k=1 uko + πo = 1, 

          ∑ wk
l
k=1 ukj − ∑ vi

m
i=1 xij − ∑ wk

l
k=1 ukj − πj ≤ 0,    j = 1, … , n,                                     

          ∑ πj = vm+1Rn
j=1 , πj ≥ 0, j = 1, … , n, vm+1 ≥ 0, 

          ∑ (aj + bj)
n
j=1 ≤ 2R,  

          πj − Rj
o = aj + bj, j = 1, … , n,      

          γr ≥ 0, wk ≥ 0, vi ≥ 0,   i = 1, … , m,  k = 1, … , l,  r = 1, … , s. 

(8) 

DMUs Input 
1 

Input 
2 

Input 
3 

Desirable 
Output 1 

Desirable 
Output 2 

Undesirable 
Output 1 

The Efficiency 
Scores of Model (2) 

1 350 39 9 67 751 5 1 
2 298 26 8 73 611 25 0.9583 
3 422 31 7 75 584 22 0.8953 
4 281 16 9 70 665 10 1 
5 301 16 6 75 445 30 1 
6 360 29 17 83 1070 22 0.9973 
7 540 18 10 72 457 20.5 0.9081 
8 276 33 5 78 590 21.6 1 
9 323 25 5 75 1074 25 1 
10 444 64 6 74 1072 27 0.9248 
11 323 25 5 25 350 23 0.5143 
12 444 64 6 104 1199 25 1 
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Table 2 show the scale of inputs  and outputs by Relation (5). 

Table 2. Scale of data. 

 

 

 

 

 

 

 

  

 

Table 3 show the The results of fixed cost allocation plan based on the The presented algorithm. 

Table 3. The results of fixed cost allocation plan. 

 

 

 

 

 

 

 

 

5|Conclusion 

This paper proposes a DEA-based fixed cost allocation plan approach account. We consider undesirable 

outputs and propose fixed cost allocation plan by considering the the principle of full-efficient mechanism. 

We apply DDF model for obtain alternative fixed cost allocation plan. By choosing different direction vectors, 

we can flexibly change the fixed cost allocation plan and the cost allocated to the units will also change. The 

proposed fixed cost allocation plan allocated cost among efficient and inefficient units. We illustrate the 

results of the proposed approach with a numerical example. We showed that based on the presented approach 

we can obtain a fair cost allocation in the presence of undesirable outcomes for each of the DMUs. The 

proposed approach can also be developed based on other strategies in the fixed cost allocation plan, such as 

the principle of no change in efficiency. As future work, the models presented in this paper can be extended 

to the two-stage network structure. 
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DMUs Input 1 Input 2 Input 3 Desirable 
Output 1 

Desirable 
Output 2 

Undesirable 
Output 1 

1 0.0802 0.1010 0.0968 0.0769 0.0847 0.0195 
2 0.0683 0.0674 0.0860 0.0838 0.0689 0.0976 
3 0.0967 0.0803 0.0753 0.0861 0.0659 0.0859 
4 0.0644 0.0415 0.0968 0.0804 0.0750 0.0390 
5 0.0690 0.0415 0.0645 0.0861 0.0502 0.1171 
6 0.0825 0.0751 0.1828 0.0953 0.1207 0.0859 
7 0.1238 0.0466 0.1075 0.0827 0.0515 0.0800 
8 0.0633 0.0855 0.0538 0.0896 0.0665 0.0843 
9 0.0740 0.0648 0.0538 0.0861 0.1211 0.0976 
10 0.1018 0.1658 0.0645 0.0850 0.1209 0.1054 
11 0.0740 0.0648 0.0538 0.0287 0.0395 0.0898 
12 0.1018 0.1658 0.0645 0.1194 0.1352 0.0976 

DMUs 𝛒𝐣 𝐑𝐣
𝐨 Fixed Cost Allocation 

1 0.0765 7.6518 8.3333 
2 0.0787 7.8668 8.3333 
3 0.0817 8.1701 8.3333 
4 0.0662 6.6184 7.7141 
5 0.0714 7.1401 8.3333 
6 0.1071 10.7052 8.3333 
7 0.0820 8.2018 8.3333 
8 0.0738 7.3835 8.0901 
9 0.0829 8.2901 8.3333 
10 0.1072 10.7235 7.7721 
11 0.0584 5.8434 8.3136 
12 0.1141 11.4052 9.7768 
sum - 100 100 



Fixed cost allocation in the presence of undesirable outputs in DEA … 

 

94

 

  Funding 

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit 

sectors. 

References 

[1]  Charnes, A., Cooper, W. W., & Rhodes, E. (1979). Measuring the efficiency of decision-making units. 

European journal of operational research, 3(4), 1–339. https://doi.org/10.1016/0377-2217(78)90138-8 

[2]  Pittman, R. W. (1983). Multilateral productivity comparisons with undesirable outputs. The economic 

journal, 93(372), 883–891. https://doi.org/10.2307/2232753 

[3]  Zhang, B., Bi, J., Fan, Z., Yuan, Z., & Ge, J. (2008). Eco-efficiency analysis of industrial system in China: 

A data envelopment analysis approach. Ecological economics, 68(1–2), 306–316. 

https://doi.org/10.1016/j.ecolecon.2008.03.009 

[4]  Wu, H., Du, S., Liang, L., & Zhou, Y. (2013). A DEA-based approach for fair reduction and reallocation 

of emission permits. Mathematical and computer modelling, 58(5–6), 1095–1101. 

https://doi.org/10.1016/j.mcm.2012.03.008 

[5]  Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European journal of 

operational research, 142(1), 16–20. https://doi.org/10.1016/S0377-2217(01)00293-4 

[6]  Chambers, R. G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of economic theory, 

70(2), 407–419. https://doi.org/10.1006/jeth.1996.0096 

[7]  Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional 

distance function approach. Journal of environmental management, 51(3), 229–240. 

https://doi.org/10.1006/jema.1997.0146 

[8]  Zanella, A., Camanho, A. S., & Dias, T. G. (2015). Undesirable outputs and weighting schemes in 

composite indicators based on data envelopment analysis. European journal of operational research, 245(2), 

517–530. https://doi.org/10.1016/j.ejor.2015.03.036 

[9]  Shephard, R. W. (2015). Theory of cost and production functions. 

https://www.torrossa.com/en/resources/an/5564811 

[10]  Maghbouli, M., Amirteimoori, A., & Kordrostami, S. (2014). Two-stage network structures with 

undesirable outputs: A DEA based approach. Measurement, 48, 109–118. 

https://doi.org/10.1016/j.measurement.2013.10.032 

[11]  Guo, D., & Wu, J. (2013). A complete ranking of DMUs with undesirable outputs using restrictions in 

DEA models. Mathematical and computer modelling, 58(5–6), 1102–1109. 

https://doi.org/10.1016/j.mcm.2011.12.044 

[12]  Khalili-Damghani, K., Tavana, M., & Haji-Saami, E. (2015). A data envelopment analysis model with 

interval data and undesirable output for combined cycle power plant performance assessment. Expert 

systems with applications, 42(2), 760–773. https://doi.org/10.1016/j.eswa.2014.08.028 

[13]  Khoshandam, L., Matin, R. K., & Amirteimoori, A. (2015). Marginal rates of substitution in data 

envelopment analysis with undesirable outputs: A directional approach. Measurement, 68, 49–57. 

https://doi.org/10.1016/j.measurement.2015.02.020 

[14]  Pishgar-Komleh, S. H., Zylowski, T., Rozakis, S., & Kozyra, J. (2020). Efficiency under different methods 

for incorporating undesirable outputs in an LCA+ DEA framework: A case study of winter wheat 

production in Poland. Journal of environmental management, 260, 110138. 

https://doi.org/10.1016/j.jenvman.2020.110138 

[15]  Chambers, R. G., Chung, Y., & Färe, R. (1998). Profit, directional distance functions, and nerlovian 

efficiency. Journal of optimization theory and applications, 98, 351–364. 

https://doi.org/10.1023/A:1022637501082 

[16]  Färe, R., & Grosskopf, S. (2003). Nonparametric productivity analysis with undesirable outputs: 

comment. American journal of agricultural economics, 85(4), 1070–1074. 

https://www.jstor.org/stable/1244786 



 Gerami and Eftekharian Jahromi  | Res. Ann. Ind. Syst. Eng. 1(2) (2024) 88-95 

 

95

 

  
[17]  Silva Portela, M. C. A., Borges, P. C., & Thanassoulis, E. (2003). Finding closest targets in non-oriented 

DEA models: the case of convex and non-convex technologies. Journal of productivity analysis, 19, 251–269. 

https://doi.org/10.1023/A:1022813702387 

[18]  Sahoo, B. K., Zhu, J., Tone, K., & Klemen, B. M. (2014). Decomposing technical efficiency and scale 

elasticity in two-stage network DEA. European journal of operational research, 233(3), 584–594. 

https://doi.org/10.1016/j.ejor.2013.09.046 

[19]  Lee, H., & Choi, Y. (2018). Greenhouse gas performance of Korean local governments based on non-radial 

DDF. Technological forecasting and social change, 135, 13–21. https://doi.org/10.1016/j.techfore.2018.07.011 

[20]  Yang, F., Wei, F., Li, Y., Huang, Y., & Chen, Y. (2018). Expected efficiency based on directional distance 

function in data envelopment analysis. Computers & industrial engineering, 125, 33–45. 

https://doi.org/10.1016/j.cie.2018.08.010 

[21]  Pastor, J. T., Lovell, C. A. K., & Aparicio, J. (2020). Defining a new graph inefficiency measure for the 

proportional directional distance function and introducing a new malmquist productivity index. 

European journal of operational research, 281(1), 222–230. https://doi.org/10.1016/j.ejor.2019.08.021 

[22]  Cook, W. D., & Zhu, J. (2005). Allocation of shared costs among decision making units: A DEA approach. 

Computers & operations research, 32(8), 2171–2178. https://doi.org/10.1016/j.cor.2004.02.007 

[23]  Cook, W. D., & Kress, M. (1999). Characterizing an equitable allocation of shared costs: A DEA approach. 

European journal of operational research, 119(3), 652–661. https://doi.org/10.1016/S0377-2217(98)00337-3 

[24]  Lin, R. (2011). Allocating fixed costs or resources and setting targets via data envelopment analysis. 

Applied mathematics and computation, 217(13), 6349–6358. https://doi.org/10.1016/j.amc.2011.01.008 

[25]  Beasley, J. E. (2003). Allocating fixed costs and resources via data envelopment analysis. European journal 

of operational research, 147(1), 198–216. https://doi.org/10.1016/S0377-2217(02)00244-8 

[26]  Si, X., Liang, L., Jia, G., Yang, L., Wu, H., & Li, Y. (2013). Proportional sharing and DEA in allocating the 

fixed cost. Applied mathematics and computation, 219(12), 6580–6590. 

https://doi.org/10.1016/j.amc.2012.12.085 

[27]  Li, Y., Li, F., Emrouznejad, A., Liang, L., & Xie, Q. (2019). Allocating the fixed cost: An approach based 

on data envelopment analysis and cooperative game. Annals of operations research, 274, 373–394. 

https://doi.org/10.1007/s10479-018-2860-9 

[28]  Li, F., Wang, Y., Emrouznejad, A., Zhu, Q., & Kou, G. (2022). Allocating a fixed cost across decision-

making units with undesirable outputs: A bargaining game approach. Journal of the operational research 

society, 73(10), 2309–2325. https://doi.org/10.1080/01605682.2021.1981781 

[29]  Chu, J., Su, W., Li, F., & Yuan, Z. (2023). Individual rationality and overall fairness in fixed cost allocation: 

An approach under DEA cross-efficiency evaluation mechanism. Journal of the operational research society, 

74(3), 992–1007. https://doi.org/10.1080/01605682.2022.2079434 

[30]  Lin, R., & Chen, Z. (2016). Fixed input allocation methods based on super CCR efficiency invariance 

and practical feasibility. Applied mathematical modelling, 40(9–10), 5377–5392. 

https://doi.org/10.1016/j.apm.2015.06.039 

[31]  Zhu, W., Zhang, Q., & Wang, H. (2019). Fixed costs and shared resources allocation in two-stage network 

DEA. Annals of operations research, 278, 177–194. https://doi.org/10.1007/s10479-017-2599-8 

[32]  Zhang, W., Wang, X., Qi, T., & Wu, X. (2018). Transmission cost allocation based on data envelopment 

analysis and cooperative game method. Electric power components and systems, 46(2), 208–217. 

https://doi.org/10.1080/15325008.2018.1444113 

[33]  Xu, G., Wu, J., & Zhu, Q. (2022). Fixed cost allocation in two-stage system: A data-driven approach 

from the perspective of fairness concern. Computers & industrial engineering, 173, 108647. 

https://doi.org/10.1016/j.cie.2022.108647 

[34]  Li, Y., Yang, M., Chen, Y., Dai, Q., & Liang, L. (2013). Allocating a fixed cost based on data envelopment 

analysis and satisfaction degree. Omega, 41(1), 55–60. https://doi.org/10.1016/j.omega.2011.02.008 

 


