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1|Introduction    

Fixed cost allocation is a critical issue for many managers. It occurs in the construction of a common platform 

within an organization. All sections related to the platform must share the fixed cost of the platform. Several 

approaches have been proposed to address fixed cost allocation. One of these approaches is Data 

Envelopment Analysis (DEA). A key issue in fixed cost allocation plans is fair allocation, which can lead to 

the organization’s growth and survival. This allocation should be based on the potential and capacity of each 

company. These companies operate under a unified management. Typically, providing a fair fixed cost 
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Abstract 

In this paper, we present a new case for the topic of fixed cost allocation in the presence of production trade-offs in 

Data Envelopment Analysis (DEA). To this end, we use the principle of unchanged efficiency and propose a fixed 

cost allocation model in such a way that the efficiency scores of Decision Making Units (DMUs) do not change 

before and after the allocation of fixed costs. By considering production trade-offs on the input and output 

components, we incorporate the importance of these inputs and outputs in the fixed cost allocation model. By treating 

fixed costs as a new input, we incorporate the importance of this new input by defining production trade-offs. 

According to the proposed fixed cost allocation plan, costs are allocated among efficient and inefficient units. An 

application of approximation for the data set is employed in the petrochemical industry, and the results of the models 

are presented.  
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allocation plan is a challenging yet important task. Such a plan should help improve organizational 

performance and prevent resource wastage. Research shows that fixed costs can also influence product pricing 

strategies, especially when companies face liquidity constraints [1], [2]. Therefore, fair cost allocation among 

companies operating in the same field under unified management is important [3]. Inappropriate fixed cost 

allocation may lead to consequences such as resource waste. For example, when the central bank management 

attempts to share operational fees with its branches, a conventional cost allocation mechanism might require 

smaller banks to pay higher fees compared to larger banks, leading smaller banks toward closure. This 

outcome is not favorable for senior bank managers, so the fixed cost allocation plan is conducted with a 

strategy to improve the efficiency of all banks, ensuring that the allocated costs enhance bank performance. 

One suitable technique for providing a fixed cost allocation plan is DEA. One strategy for cost allocation is 

to ensure that efficiency does not worsen after allocation. Cook and Zhu [4] proposed a model for fair cost 

allocation based on the principle of unchanged efficiency. Lin [5] showed that the Cook and Zhu [4] model 

does not have a solution when adding certain specific constraints. Mostafaei [6] proposed a model based on 

unchanged efficiency, aiming to change the class interval to unit scale. Jahanshahloo et al. [7] presented a 

model based on the sum of common weights in DEA for providing a fixed cost allocation plan, considering 

the strategy of unchanged efficiency. Li et al. [8] proposed a model for a fixed cost allocation plan for two-

stage networks, where all units became efficient after the allocation plan. Another strategy for fixed cost 

allocation is based on the decision-maker’s preference information, where some units’ efficiency may worsen 

while others improve, with the total cost allocated among units. This method is conducted interactively in 

DEA, based on preferred goals [9], [10]. Li .et al. [11] provided a degree of satisfaction approximation to 

obtain a unique allocation plan based on the principle of effectiveness. Chu.et.al [12] proposed a competition 

between the two stages of a two-stage network based on a leader-follower model to obtain a unique cost 

allocation plan, following the principle of effectiveness. Xu .et.al [13] presented a unique cost allocation plan 

based on DEA from the perspective of inequality aversion. They demonstrated that their plan is unique, 

allocating costs to units under both optimistic and pessimistic scenarios. The models proposed by Cook and 

Kress [14] and Cook and Zhu [4] were based on the principle of unchanged efficiency. The principle of 

effectiveness implies that the efficiency of all units should not decrease after the allocation of fixed costs 

compared to before the allocation; in fact, the term “effective” refers to maintaining or enhancing efficiency. 

This approach may lead to a non-unique cost allocation plan, and additional criteria need to be introduced to 

achieve a unique cost allocation plan. Li.et.al [11] proposed a satisfaction approximation to obtain a unique 

cost allocation plan based on the principle of effectiveness. It should be noted that using different methods 

to propose a unique cost allocation plan might result in unfair allocation schemes, posing risks to some units. 

The cost allocation plan must be equitable and acceptable to all Decision-Making Units (DMUs).  

One way to incorporate preference information in evaluating the efficiency of DMUs is through weight 

restrictions. In this approach, the relative importance of input and output components is determined by 

imposing weight restrictions. By applying weight constraints, we can take into account the importance of 

input and output components relative to each other in evaluating the performance of units. Weight 

restrictions are applied in multiplicative models. However, the equivalent problem of weight restrictions in 

multiplicative models is production trade-offs in envelopment models. By placing production trade-offs on 

the input and output components, we can account for their importance and relationships in envelopment 

models. The concept of trade-off refers to the compromises or exchanges between different inputs and 

outputs that occur during the efficiency evaluation process. These interactions play a crucial role in decision-

making and improving unit performance. In defining trade-off, an improvement in one output or a reduction 

in one input might lead to a decrease in other outputs or an increase in other inputs. In other words, 

improvement in one aspect might come at the expense of a decrease in others. A trade-off in an input might 

result in an increase in other inputs; for instance, reducing labor costs might lead to an increase in capital 

expenses. Similarly, a trade-off in outputs could mean an improvement in one output accompanied by a 

reduction in others, such as increasing the production of one product might lead to a decrease in the quality 

of another product. Trade-offs between inputs and outputs suggest that a reduction in one input might result 

in a reduction in an output, or increasing an output might require an increase in an input. In DEA, trade-offs 
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facilitate informed decision-making and enhance efficiency by optimally allocating resources and managing 

limited resources. Podinovski [15] examined how interactions between inputs and outputs can be modeled 

using relative weights in DEA models. He demonstrated that by imposing appropriate constraints, the 

balances between variables could be promptly integrated into the model. For example, if a reduction in one 

input results in an increase in another input, this relationship can be represented by imposing linear constraints 

on the related weights in the DEA model. Podinovski [16] explored nonlinear balances between variables and 

proposed methods for modeling these balances. Podinovski [17] analyzed the directions of trade-offs and 

showed how these directions can be identified in DEA models. He also examined optimal weights in DEA 

models with weight constraints, stating that optimal targets are achieved across all units under weight 

constraints. Podinovski [16] provided methods for calculating efficiency and obtaining efficient targets in 

DEA models in the presence of weight constraints. They presented a two-stage model for finding feasible 

and efficient targets for all units, incorporating production technology with trade-offs. Podinovski and 

Bouzdine [18] explored the issue of unrestricted and free production in envelopment models with trade-offs, 

showing that with unlimited outputs, multiplicative models might become infeasible. In 2015, they 

investigated consistent weight constraints in DEA, examining the necessary and sufficient conditions for 

model feasibility in the presence of trade-offs between inputs and outputs. They demonstrated how to solve 

models and compute efficiency when free or unlimited outputs are present. In 2016, Podinovski and Bouzdine 

[19] proposed a single-stage DEA model in the presence of trade-offs to obtain feasible targets in DEA. Atici 

and Podinovski [20] assessed the technical efficiency of decision-making units or various specialists, applying 

their model in the agricultural industry using the production trade-offs method. Podinovski et al. [21] 

addressed DEA models in the presence of production trade-offs when inputs and outputs are ratio data, 

evaluating the performance of secondary schools in England. 

In this paper, we aim to present a fair fixed cost allocation plan based on the strategy of unchanged efficiency 

in the presence of production trade-offs. To achieve this, we first introduce the concept of production trade-

offs on inputs and outputs, considering fixed costs as a new input in the model. In this context, we propose 

an algorithm to determine the allocated cost to units, taking into account all efficient and inefficient units. 

The structure of this paper is as follows: in the second section, we introduce the topic of production trade-

offs in DEA to consider the relative importance of inputs and outputs, demonstrating that taking production 

trade-offs into account is equivalent to considering weight restrictions in multiplicative models. In the third 

section, we present a fixed cost allocation plan in the presence of production trade-offs. In the fourth section, 

we apply the proposed approach to a dataset of refineries in Iran and provide a cost allocation plan for these 

refineries, presenting the results of our research. 

2|Production Trade-offs in DEA 

Consider n DMUs represented as DMUj = (xj, yj). Each decision-making unit consumes an input vector 

xjϵR+
m  to produce an yjϵR+

s . The input and output vectors are non-negative, and at least one input and one 

output are strictly positive for at least one DMU. Suppose we have L assigned production trade- 

offs denoted by (τt, Γt), where t = 1, … , L. The vectors τtϵRmand ΓtϵRs adjust the inputs and outputs, 

respectively. By assuming the feasibility of production trade-offs as described below, we can present the CCR 

model for evaluating the performance of the unit under assessment, DMUo = (xo, yo). 

Podinovski [15] defined this principle as follows: for defining the feasibility of production trade-offs, assume 

(X, Y) ∈ T, the production possibility set, and that the production trade-off system t = 1, … , L is expressed as 

(τt, Γt). For each αt  ≥0, the condition (X + αtτt, Y + αtΓt) ∈ T holds provided that  

Podinovski [22] presented Model (2) in an output-oriented nature for evaluating the efficiency of DMUo in the 

presence of production trade-offs under constant returns to scale, as follows. 

X + αtτt ≥ 0  and Y + αtΓt  ≥ 0 . (1) 
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Podinovski [16] proposed the following to identify efficient targets in the presence of production trade-offs 

corresponding to DMUo. Assume that the radial target DMUo obtained from Model (2) is (Xo, φo
∗ Yo) = (Xo

∗ , Yo
∗). 

To obtain non-negative targets, we first solve the following model. 

Assume the optimal solution obtained from Model (3) is (λ̅, β̅, γ̅, w̅, α̅). We define the target corresponding to 

Dmuo obtained from Models (2) and (3) as follows. 

The point (X̅, Y̅) is a Pareto efficient unit in the production technology in the presence of production trade-

offs if φo
∗ = 1 and the vectors β̅, γ̅  are zero vectors; in this case, DMUo  is efficient. Otherwise, it is inefficient. 

As we know, in traditional DEA models, the reference set for each  DMUo  is defined as follows. 

This means if we set, , (X̅, Y̅) = (∑ λ̅jXj , ∑ λ̅jYj), where λ
k

≥ 0, then DMUk is included in the reference set 

associated with DMUo. DMUk is efficient and is considered as the direction of efficiency for DMUo.  However, 

in the presence of production trade-offs, even if λ̅k ≥ 0 in the optimal solution of Model (3), DMUk  might still 

be inefficient. The weight λ̅o of DMUo in its own efficiency target may also be strictly positive, but this does 

not occur if the optimal solution from Model (3) is unique. Podinovski introduced Model (5) to find the 

maximum components w1 based on the sum of solutions β̅, γ̅ from Model (3), as outlined below. 

Note that x̅i − γ̅i ≥ 0. Consider an optimal solution of Model (6) as (λ̂o, α̂o, ŵ) .  
Theorem 1. If  λk

o > 0 in the optimal solution of Model (6), then DMUk is a Pareto efficient unit in the presence 

of production trade-offs. According to Theorem 1, DMUk is included in the reference set of DMUo. (For proof, 

refer to [16]). 

Max φo, 

s.t.    ∑ λjoxj + ∑ αtoτt ≤ Xo
L
t=1

n
j=1  , 

 ∑ λjoYj + ∑ αtoΓt ≥ φoYo
L
t=1

n
j=1  ,                                 

λjo ≥ 0,  j = 1, … , n,  αto ≥ 0, t = 1, … , L, φo free sign. 

(2) 

Max  ∑ βr
s
r=1  + ∑ γi

m
i=1 ,                                                

s. t.    ∑ λjoxij  + ∑ αtoτit + γi + wi = xi
∗L

t=1
n
j=1 , 

∑ λjoyrj  + ∑ αtoΓrt − βr = yr
∗L

t=1
n
j=1  ,                             

∑ λjoxij  + ∑ αtoτit + wi ≥ 0L
t=1

n
j=1 , 

 λjo ≥ 0,  j = 1, … , n,  γi ≥ 0, wi ≥ 0,  i = 1, … , m,  βr ≥ 0, r = 1, … s. 

(3) 

 X̅ =  ∑ λ̅jo xj̅ + ∑ α̅to τt + w ,̅̅ ̅̅  

 Y̅ =  ∑ λ̅jo yj̅ + ∑ α̅to Γt,                                     

Where X̅ =    X∗ + γ̅  , Y̅ = Y∗ + β̅.            

(4) 

 M = {DMUj|λjo
∗ ≥ 0,   In one of the optimal solutions of the CCR model  }.    (5)     

 Max     ∑ wi

m

i=1

 ,                                             

  s.t.  ∑ λjoxij  + ∑ αtoτit + wi = xio
∗L

t=1
n
j=1 − γ̅i, 

         ∑ λjoYrj  + ∑ αtoΓrt = yr
∗ + βr

∗L
t=1

n
j=1  ,                                       

         ∑ λjoxij  + ∑ αtoτit + wi ≥ 0L
t=1

n
j=1 , 

         λjo ≥ 0, j = 1, … , n, αto ≥ 0, t = 1, … , L,, 

          wi ≥ 0, i = 1, … , m. 

(6) 
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3|Allocation of Fixed Costs in the Presence of Production Trade-offs 

Suppose we want to distribute a total fixed cost R among DMUs. Each DMUj is allocated a non-negative cost 

rj such that ∑ rj = Rn
j=1 . The cost allocated to each DMUj is considered as a new input. The approximation 

provided in this paper, in the presence of production trade-offs, is based on the principle of maintaining 

efficiency unchanged. Each DMUj has no control over the allocated cost amount; therefore, their performance 

depends on their input and output levels. We assume that the efficiency of the unit under evaluation does not 

change after the allocation of the fixed cost rj. Model (2), in the presence of production trade-offs and cost 

rj corresponding to each DMUj, for evaluating DMUo, will be as follows. 

Assume (φ̃o
TCA, λ̃j)  is an optimal solution of Model (7) and  (φo

∗ , λj
∗)   is an optimal solution of Model (2). Let 

the set NE represent the set of inefficient (non-extreme) units and E represent the set of efficient DMUs 

based on Model (2). If the cost allocation satisfies ∑ λjo
∗ rj ≤ ro for all members o ∈ NE  , then (φo

∗ , λj
∗), is a 

solution for Model (7), and we have φ̃o
TCA = φo

∗ .    If DMUo is inefficient, then λj
∗ = 0, and the equation ∑ λjo

∗ rj ≤

ro ,  can be written as ∑ λjo
∗ rjj∈E ≤ ro for o ∈ NE.  If DMUo,  is efficient before allocation, we have φo

∗ = φ̃o
TCA =

1, and the cost allocation does not change the efficiency of the units. Therefore, if we make a cost allocation 

(r1, … , rn) based on the principle of maintaining efficiency, the cost allocation must satisfy the inequality 

∑ λjo
∗ rj ≤ roj∈E  for all o ∈ NE, where E is the reference set corresponding to DMUo, which was discussed in t 

he previous section. This reference set is obtained by solving Model (6). Now, we provide a plan for fixed cost 

allocation in the presence of production trade-offs. Suppose we consider ηj corresponding to the cost rj as a 

proportion of the total variable cost R allocated to DMUj, which is determined as ηj for DMUj,  and we have 

∑ ηj
n
j=1 = 1. Considering the influence of the efficiency scores and input-output scales of the units in fixed 

cost allocation, we choose accordingly. 

Therefore, a higher efficiency score φj
∗  of DMUj   will have less impact on the ratio ηj, and with larger input-

output scales and better efficiency of DMUj, the corresponding allocation ratio, DMUj, will have a larger ηj 

value. Thus, we define the ratio of the corresponding cost as follows. 

To obtain the fixed cost allocation scheme for DMUj, j = 1, … , n, we present the following model. If the 

allocated cost for each DMUj is considered as r̃j, then all DMUs will pay a cost proportional to their relative 

efficiency and input-output scales, and we will have no changes such that these r̃j satisfy the principle of no 

change in efficiency. To address this, we define another principle known as the minimum deviation principle, 

which states that, without violating the principle of no change in efficiency, the difference between the 

allocated costs and the corresponding relative costs should be minimized as much as possible. The distance 

function can be expressed as follows. 

Max φo
TCA, 

s.t   ∑ λjoxij  + ∑ αtoτit ≤L
t=1

n
j=1 xio,  i = 1, … , m, 

∑ λjoyrj  + ∑ αtoΓrt ≥ yro
L
t=1

n
j=1 φo

TCA,  r = 1, … , s, 

∑ λjorj  + ∑ αtoτm+1t ≤ ro
L
t=1

n
j=1 ,                                                    

∑ rj = Rn
j=1 , 

 λjo ≥ 0, rj ≥ 0, j = 1, … , n,  

αto ≥ 0, t = 1, … , L.                 

(7) 

ηj =
(∑ yrj

s
r=1 . ∑ xij

m
i=1 )/φj

∗

∑ (∑ yrj
s
r=1 . ∑ xij

m
i=1 )/φj

∗n
j=1

 .  (8) 

r̃j = ηjR =
(∑ yrj

s
r=1 .∑ xij

m
i=1 )/φj

∗

∑ (∑ yrj
s
r=1 ∑ xij

m
i=1 )/φj

∗n
j=1

R.             (9) 

D(r) = √∑ (rj − r̃j)
2n

j=1 .  
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We define it as follows, thus we can obtain the fixed cost allocation scheme by solving the following model.   

In Model (10), we modify the set EF based on Model (4), and λj
∗ and αt

∗ are obtained from solving Model (2). 

Therefore, we present the following algorithm for obtaining the fixed cost allocation scheme: 

Step 1. Define the production trade-off matrices based on Eq. (1) and solve Model (2) to obtain the values of 

φo
∗ , λjo

∗ , j = 1, … , n, and αto
∗ , t = 1, … , L. 

Step 2. Obtain the values of r̃j from Eq. (9). 

Step 3. Solve Model (10) to obtain the fixed cost allocation scheme. 

It should be noted that Model (7) is a nonlinear model, requiring nonlinear algorithms for its solution. 

However, for solving Model (10), we can replace the objective function with a linear one, such as 

min ∑ |rj − r̃j|
n
j=1  . 

Therefore, we can obtain the fixed cost allocation scheme without solving Model (7). 

4|Numerical Example 

To illustrate the results of the models presented in this paper for the fixed cost allocation scheme, we use a 

numerical example from previous DEA studies. This example pertains to the work of Cook and Kress [14]. 

This dataset involves 12 DMUs, each consuming three inputs to produce two outputs. We assume that we 

want to allocate a fixed cost of 100 units among the DMUs. Initially, to incorporate the decision maker's 

perspective in the fixed cost allocation process, we use the method of production trade-offs. Accordingly, in 

line with the production trade-offs (1), we define the matrices ϵ and Γ  for inputs and outputs as follows: 

Production trade-offs (1):    

The equivalent weight restriction of this production trade-off is as follows: 

This production trade-off shows the relationship between the quantity of outputs produced from inputs and 

the corresponding input-output weights. Column seven of Table 1 shows the results of Model (2) in evaluating 

the efficiency of the units in the presence of production trade-off (1). As observed, units 4, 5, 8, 9, and 12 are 

efficient, while the others are inefficient. Column eight of Table 1 displays the reference set and the 

corresponding multipliers for the units in the reference set for each unit based on Model (2). Additionally, the 

last column of the table shows the multipliers corresponding to only the considered production trade-offs. 

Now, to obtain the efficient targets for each unit in the presence of production trade-off (1), we consider 

Model (3). These targets are frontier points from the production possibility set in the presence of the 

production trade-offs, which are efficient according to Theorem 1. Subsequently, to obtain the fixed cost 

allocation scheme in the presence of Production Trade-off (1), we first use Eq. (8) to adjust the ηj values 

corresponding to each unit according to their efficiency scores from Model (2) and their input-output scales. 

These values are presented in the third column of Table 3. Also, the fourth column of Table 3 shows the cost 

allocated to the units based on Eq. (9). This cost is determined according to the efficiency values of the units 

in the presence of production trade-offs and the input-output sizes. Now, to obtain the fixed cost allocation 

scheme in the presence of production trade-offs, we solve Model (10). The results obtained from Model (10) 

 Min ∑ (rj − r̃j)
2,n

j=1  

 s.t.    ∑ λjo
∗ rjj∈EF ≤ ro   o ∈ NE,                                       

∑ rj = Rn
j=1  , rj ≥ 0,   j = 1, … , n. 

(10) 

 

τ = (0.5,1, −2)  , Γ = (2,1).  

-2u3 + u2 + 0.5u1 − v1 − 2v2 ≤ 0.  
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are in the last column of Table 3. This cost varies according to the efficiency scores, input-output sizes, and 

the production trade-off matrix. To conduct a sensitivity analysis of the model results relative to changes in 

the production trade-off matrix, we select these matrices differently. In the second choice, we select the 

production trade-off matrices as follows: 

Production trade-offs (2): 

The results related to this production trade-off are presented in Tables 4-6. Similar interpretations to those 

regarding the trade-off can be provided for this production trade-off. The corresponding weight restriction 

for this production trade-off is as follows. 

As observed, in the second column of Table 4, units 4, 5, 8, 9, and 12 are efficient, and the other units are 

inefficient. The reference set corresponding to the inefficient units is listed in the third column of Table 4. 

Table 5 shows the efficient targets corresponding to the decision-making units in the presence of production 

trade-off (2). Table 4 presents the fixed cost allocation scheme. The second and third columns of Table 4 show 

the values of ηj and r̃j , corresponding to the efficiency scores in the presence of production trade-off (2) and 

the size of the inputs and outputs. The last column of Table 6 displays the amount of fixed cost allocated to 

the units. This cost is provided under the assumption of no change in the efficiency of the units, and the 

efficiency scores of the units do not change after the fixed cost allocation, considering this cost as a new 

input. 

Table 1. Data set and the results of model (2) with trade-offs 1. 

 

Table 2. Targets of DMUs of model (3) with trade-offs 1. 

 

 

 

 

 

 

 

 

τ = (4, −3,2),   Γ = (1, −4).  

2u3 − 3u2 + 4u1 − v1 + 4v2 ≤ 0,   

DMUs Input 1 Input 2 Input 3 Output 1 Output 2 The Efficiency 
Scores of Model (2) 

Units in the Reference Set 
Based on the Model (2) 

𝛂𝐭𝐨
∗  

1 350 39 9 67 751 0.6846 λ9
∗ = 0.8953, λ12

∗ =
0.1047 

9.9159 

2 298 26 8 73 611 0.8295 λ4
∗ = 0.8461, λ9

∗ =
0.1539 

8.6152 

3 422 31 7 75 584 0.7697 λ4
∗ = 0.8031λ9

∗ = 0.1969,  13.2283 

4 281 16 9 70 665 1 λ4
∗ = 1, 0 

5 301 16 6 75 445 1 λ5
∗ = 1 0 

6 360 29 17 83 1070 0.9978 λ4
∗ = 0.0141, λ9

∗ =
0.9859 

4.1269 

7 540 18 10 72 457 0.924 λ4
∗ = 0.2162, λ5

∗ =
0.7838,  

2 

8 276 33 5 78 590 1 λ8
∗ = 1 0 

9 323 25 5 75 1074 1 λ9
∗ = 1 0 

10 444 64 6 74 1072 0.8941 λ12
∗ = 1 0 

11 323 25 5 25 350 0.331 λ4
∗ = 0.0412, λ9

∗ =
0.9588 

0.3711 

12 444 64 6 104 1199 1 λ5
∗ = 1 0 

DMUs Input 1 Input 2 Input 3 Output 1 Output 2 

1 340.6291 39 0 97.8687 1097.0059 
2 298 26 8 87.9998 736.5459 
3 295.882 31 0 97.4409 758.7415 
4 281 16 9 70 665 
5 301 16 6 75 445 
6 324.4715 29 0 83.1832 1072.3631 
7 540 18 10 77.9189 494.5686 
8 276 33 5 78 590 
9 323 25 5 75 1074 
10 444 64 6 104 1199 
11 323 25 5 75.5361 1057.5052 
12 444 64 6 104 1199 
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Table 3. The results of fixed cost allocation with trade-offs 1. 

 

 

 

 

 

 

 

 

 

Table 4. Data set and the results of model (2) with trade-offs 2. 

 

 

 

 

 

 

 

 

 

 

Table 5. Targets of DMUs of model (3) with trade-offs 2. 

 

 

 

 

 

 

 

 

DMUs Scale of Data 𝛈𝐣 �̃�𝐣 Fixed Cost Allocation 

1 475553.6079 0.10174021 10.174021 11.2757 
2 273764.9186 0.058569423 5.8569423 9.3648 
3 393841.7565 0.08425873 8.425873 9.5290 
4 224910 0.048117374 4.8117374 8.7774 
5 167960 0.035933458 3.5933458 5.3607 
6 469150.1303 0.100370247 10.0370247 12.5405 
7 325186.1472 0.06957051 6.957051 6.0994 
8 209752 0.044874463 4.4874463 6.0105 
9 405597 0.086773654 8.6773654 12.5944 
10 658812.2134 0.140946661 14.0946661 6.0105 
11 399924.4713 0.08556007 8.556007 12.4371 
12 669742 0.143284986 14.3284986 0.0000 
sum 4674195 - - - 

DMUs The Efficiency 
Scores of Model (2) 

Units in the Reference Set 
Based on the Model (2) 

𝛂𝐭𝐨
∗  

1 0.7798 λ8
∗ = 0.3106, λ9

∗ = 0.3602, λ12
∗ =

0.3292 
0.4411 

2 0.9208 λ5
∗ = 0.1377, λ8

∗ = 0.6650, 
λ9

∗ = 0.1673, λ12
∗ = 0.0299 

1.4162 

3 0.8775 λ5
∗ = 0.6563, λ12

∗ = 0.3438 0.5 
4 1 λ4

∗ = 1, 0 
5 1 λ5

∗ = 1 0 
6 0.9849 λ8

∗ = 0.0226, λ9
∗ = 0.7280, λ12

∗ =
0.2494 

1.9695 

7 0.8798 λ5
∗ = 0.8333, λ12

∗ = 0.1667  2 
8 1 λ8

∗ = 1 0 
9 1 λ9

∗ = 1 0 
10 0.8941 λ12

∗ = 1 0 
11 0.3333 λ9

∗ = 1 0 
12 1 λ5

∗ = 1 0 

DMUs Input 1 Input 2 Input 3 Output 1 Output 2 

1 350 39 9 85.9195 963.0675 
2 298 26 8 79.2796 663.5594 
3 422 31 7 85.4688 665.5167 
4 281 16 9 70 665 
5 301 16 6 75 445 
6 360 29 9.1885 84.2709 1086.3847 
7 332.8333 18 10 81.8333 562.6709 
8 276 33 5 78 590 
9 323 25 5 75 1074 
10 444 64 6 104 1199 
11 323 25 5 75 1074 
12 444 64 6 104 1199 
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Table 6. The results of fixed cost allocation with trade-offs 2. 

 

 

 

 

 

 

  

  

  

 

5|Conclusion 

In this paper, we presented a fixed cost allocation plan considering production trade-offs among inputs and 

outputs. In this approach, we employed the strategy of maintaining unchanged efficiency of units after cost 

allocation. Under this principle, the efficiency of units remains unchanged after the allocation of fixed costs. 

To account for the relative importance of inputs and outputs, we used the production trade-offs method in 

the cost allocation model. We also considered two factors in the cost allocation of units: the first factor being 

the efficiency of the units, and the second factor the size of the inputs and outputs. In the practical example 

section, we demonstrated that by selecting different production trade-off matrices, we can incorporate the 

relative importance of inputs and outputs in the cost allocation process, resulting in divergent outcomes. As 

future work, the proposed models can be developed for a two-stage network structure in DEA. Additionally, 

we can utilize other strategies, such as achieving unit efficiency after allocation. 
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