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1|Introduction    

With industrial progress and economic expansion, domestic and international trade has grown significantly, 

making freight transport essential. Among different transport methods, maritime transport, especially 

container trade, plays a key role in global supply chains. In 2012, container transport accounted for over 16% 
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Abstract 

In recent years, the increase in Gross Domestic Product (GDP) and global trade has significantly expanded the role 

of freight transport, particularly maritime transport. Container trade has experienced notable growth, and shipping 

lines have become one of the most important container transport methods. Proper scheduling of these shipping lines 

requires precise planning, with factors such as port service availability playing a crucial role. The term “port time 

window” refers to specific timeframes during which a port can provide services to ships, significantly affecting 

shipping line schedules. Well-designed schedules not only affect fuel consumption but also contribute to reducing air 

pollution. However, uncertainty in various parameters can degrade the quality of scheduling outcomes. The present 

research proposes a scheduling model for container shipping lines within a green supply chain. It aims to minimize 

transportation costs, fuel consumption, and environmental pollution while considering port time windows and 

demand uncertainty. Given the complexity and constraints of the problem, it is classified as NP-hard. Small-scale 

instances are solved using GAMS software, while metaheuristic algorithms are applied to large-scale problems. 

Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are employed for comparison, and results are 

analyzed regarding solution time and accuracy.  
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of global maritime freight, underscoring its importance. Containers transport various goods, including 

industrial materials, food, and textiles, and are scheduled by shipping companies to ensure timely delivery. 

Synchronizing ship arrivals and departures with port schedules enables customers to precisely plan their cargo 

deliveries, reinforcing container shipping as a pillar of global supply chains. However, scheduling ships and 

planning their routes is challenging and is influenced by several factors, including port service availability. Port 

service capacity is inherently limited, meaning only a restricted number of ships can receive services at a given 

time. The port time window defines specific periods during which a port can accommodate ships, making it 

a critical factor in scheduling. Designing effective shipping schedules without incorporating port time 

windows is impractical. Thus, robust scheduling mechanisms must be developed to provide fast, safe, and 

cost-effective shipping. 

Uncertainty is inevitable in modern supply chains, affecting nearly all operational parameters. Ignoring 

demand uncertainty can undermine model reliability, leading to suboptimal decisions. Therefore, 

incorporating demand uncertainty into supply chain planning is essential, and practical strategies must be 

devised to mitigate its impact. 

The movement of shipping lines follows precise schedules that dictate the departure times of vessels. These 

schedules directly impact ship speed and fuel consumption, increasing cubically with ship speed. 

Consequently, this factor is closely linked to environmental pollution. A well-designed schedule can 

significantly reduce transportation costs, minimize stopovers, and lower fuel consumption. 

This research aims to develop an optimized scheduling model for container shipping lines that minimizes 

vessel operation costs, transportation costs, and environmental emissions. Besides, the scheduling model 

must account for port time windows and demand uncertainty, as these factors critically affect the reliability 

of model results. Failure to incorporate uncertainty in demand can lead to erroneous planning decisions and 

reduced model credibility. Thus, this study proposes a container shipping scheduling model within a green 

supply chain framework. The primary objective is cost reduction while considering port time constraints and 

uncertain demand levels. The container routing and scheduling problem is divided into two components: Ship 

loading and route planning and Freight allocation to demand points. This research primarily focuses on the 

first component – ship routing and scheduling – by modeling the problem as a Vehicle Routing Problem 

(VRP). The model incorporates economic objectives (cost minimization) and environmental goals (pollution 

reduction) while explicitly accounting for port time windows and demand uncertainty. 

2|Literature Review 

Given containerized maritime transport's critical role, precise shipping line scheduling has gained substantial 

research attention in recent years. Numerous studies have examined supply chain scheduling, specifically 

container transport logistics. This research reviews the literature on green supply chains, demand uncertainty, 

and transportation scheduling, particularly in containerized maritime shipping. 

Despite the significance of schedule optimization in container transit networks, limited studies have 

considered the combined effect of port time windows, green supply chain principles, and demand uncertainty. 

Addressing these factors is crucial for improving shipping profitability and enhancing global supply chain 

efficiency. The primary goal of Supply Chain Management (SCM) is to ensure service reliability while 

minimizing total system costs, including transportation, shortage, and inventory holding costs. Fig. 1 provides 

a conceptual overview of the supply chain network under study. 
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Fig. 1. A conceptual overview of the supply chain network under study. 

 

3|Previous Studies 

De Matos Sá et al. [1] investigated offshore wind farms facing high-reliability challenges and maintenance 

costs due to their harsh environments. The study proposed a novel maintenance scheduling approach based 

on wind and wave forecasts, optimizing Operations and Maintenance (O&M) schedules to reduce costs and 

operational risks. The method improved wind farm profitability by 2–24%, with a case study on WindFloat 

Atlantic demonstrating its effectiveness. 

Ma et al. [2] introduced a two-stage scheduling approach for Active Distribution Networks (ADN), 

incorporating uncertainty in renewable energy sources and system failures. The first stage aimed to minimize 

operational costs, while the second focused on minimizing load reduction under emergency conditions. The 

study employed Particle Swarm Optimization (PSO), and simulation results validated the high efficiency of 

the proposed method. 

Kumar et al. [3] addressed the growing global concern for sustainability in SCM, emphasizing the need for 

integrating sustainability into decision-making. Their study proposed a network planning model to reduce 

costs and carbon emissions while ensuring balanced material flow and optimized resource utilization. 

Moreover, sensitivity analysis was conducted to evaluate the impact of various parameters on system 

performance. 

Gharibi et al. [4] developed a closed-loop logistics network for mobile phone and digital camera after-sales 

services to maximize profit and minimize environmental impact. Their proposed model, formulated as a 

Mixed-Integer Linear Programming (MILP) problem, optimized resource allocation and the efficiency of 

disassembly centers. The results demonstrated that incorporating green factors into network design reduces 

environmental pollution while increasing profitability. 

Utsav et al. [5] explored the integration of predictive algorithms and optimization techniques for solving 

decision-making problems under uncertainty, a field known as “contextual optimization." Their study 

introduced various models and methodologies derived from Operations Research (OR) and Machine 

Learning (ML). The objective was to provide a comprehensive overview of this emerging field and stimulate 

further advancements in combining ML with probabilistic programming. 

Bui et al. [6] focused on enhancing green production in the textile industry. They employed hybrid methods 

to identify key sustainability factors and their causal relationships. They aimed to construct a reliable 

hierarchical model with five main aspects and 23 criteria, assisting Vietnam's textile sector adopt more 

environmentally friendly and sustainable practices. 

Chabane et al. [7] introduced a dual-objective model to minimize costs and greenhouse gas emissions. 

Abdullah et al. [8] proposed a single-objective model considering environmental concerns and pollution 

permit costs. 
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Kannan et al. [9] developed a reverse logistics network design, while Chabane’s additional work involved a 

dual-objective closed-loop supply chain model minimizing environmental impact. 

Pishva et al. [10] formulated a dual-objective model addressing facility location, capacity, and technology 

selection, incorporating fuzzy modeling to handle production cost and emission uncertainty. 

Giarola et al. [11] used a two-stage stochastic programming approach to model uncertainty in pollution permit 

pricing, designing a partial supply chain network that did not encompass all supply, production, and 

distribution levels. 

4|Scheduling and Routing in Containerized Maritime Transport 

Christiansen et al. [12] and Meng et al. [13] highlighted that research on scheduling in container shipping 

networks remains scarce. Their study, which focused on technical-level schedule design, marked some of the 

earliest work in this domain. 

Wang and Meng [14] developed a container scheduling and routing model for a general shipping network 

with multiple ports and routes. 

Qi and Song [15] proposed a schedule optimization model targeting fuel consumption reduction. 

Wang and Meng [16] later incorporated uncertainty in port operations and vessel recovery processes, 

assuming that ships could compensate for delays. They ensured that their models were as close to real-world 

conditions as possible. 

Wang et al. [17] proposed a dynamic programming approach for ship scheduling, incorporating port time 

windows. Their extended study analyzed recurrent port visits, optimizing schedules based on operational 

constraints. 

Borner et al. [18] investigated scheduled ship recovery, assessing failure scenarios and activity-balancing 

strategies to enhance resilience in maritime operations. 

Homayouni et al. [19] analyzed carbon regulation mechanisms and their impact on sustainable green supply 

chains. Using a multi-objective planning model, they evaluated carbon reduction strategies, comparing carbon 

tax policies and cap-and-trade mechanisms. The findings suggest that cap-and-trade policies are more 

effective and better suited to managing uncertainties when supported by government incentives. 

Coşkun et al. [20] examined the impact of uncertainties on supply chain resilience and the role of information 

sharing. Their results indicate that non-technological uncertainties (except technology) negatively affect 

supply chain resilience, and high-level information sharing with suppliers can have adverse effects. The study 

emphasizes the need for proactive strategies to maintain supply chain resilience. 

Sun et al. [21] proposed a renewable energy integration model incorporating carbon capture technologies and 

demand-side management. Their model successfully reduces costs and carbon emissions while optimizing 

electricity distribution and load management, contributing to low-carbon energy goals. 

Wang [22] focused on promoting green agricultural transformation by addressing supply chain instability 

under demand and output uncertainties. Using a Stackelberg game model and profit-sharing contracts, they 

optimized and coordinated the agricultural supply chain, improving overall revenue and ensuring sustainable 

operations. 

5|Research Methodology 

This study develops a scheduling model for containerized shipping lines within a green supply chain, aiming 

to minimize costs while considering port time windows and demand uncertainty. Due to the sensitive nature 

of transported goods, maritime transport requires precise planning. Various logistics and maritime transport 

approaches have been examined, revealing the need for further research to develop more efficient models. 
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This section introduces an enhanced scheduling model compared to previous studies, outlining the research 

methodology and proposed model. 

The container routing and scheduling problem is divided into two main components: 

I. Ship loading and route planning: Determines the optimal routes that the fleet must follow to reach its 

destination. 

II. Cargo allocation and unloading: Optimizes cargo distribution to demand points. 

This research focuses on the first component-ship routing and scheduling-which involves planning ship 

loading and defining optimal routes, modeled as a VRP. The locations where goods can be loaded consist of 

loading terminals (L). Various product types (O) are transported using containers, each with different 

capacities. 

Fig. 2 illustrates the routing and scheduling problem model for cargo loading planning. Each loading center 

can load one or two types of products. Furthermore, each container has a different capacity. All containers 

have a designated origin and, after traversing various routes, ultimately arrive at a specific destination and 

port. The starting point is considered as (s) and the endpoint as (g). Along the way, ships pass through several 

intermediate points and cover demand points en route. Various configurations, such as opened routes, 

different origins, and diverse destinations, can be implemented within the model, which offers this flexibility. 

Fig. 2. Schematic representation of container ship routing and scheduling. 

 

5.1|Problem Characteristics and Proposed Model 

The distance between loading points, represented as dij, is asymmetric, meaning that dij= dji. However, the 

triangle inequality holds: 

The set of available containers is denoted as T, each with a fixed and predefined capacity. Moreover, the 

demand for goods is uncertain and modeled using fuzzy logic. The total demand volume for each product 

type o ∈ O is denoted as DÕ, where supply chain providers specify demand as fuzzy values every month. 

Thus, the problem involves multiple products with diverse types and focuses on solving a container fleet's 

routing and scheduling problem with limited capacity and loading constraints to optimize allocation, routing, 

and loading volume. This model aims to minimize total costs while accounting for demand uncertainty. 

In addition, the model considers environmental concerns. The shipping fleet must comply with certain 

environmental regulations and constraints in container transportation, which will be addressed later. Another 

key issue in this model is time windows. Ships cannot depart anytime they wish, as ports have limited capacity. 

Therefore, the time window constraint is also incorporated into this model. The objective function aims to 

minimize the total operational costs of containers over one month. Total costs include inventory holding 

costs on ships and terminal-related costs, which depend on the number of stops made at terminals. 

di,j+dj,k ≥ di,k .  

Destination
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Furthermore, this problem assumes the existence of only one origin terminal and one destination terminal. 

To enhance focus and enable more precise planning, all movements are believed to start from a specified 

origin, pass through intermediate demand points, and end at a designated destination, completing the 

transportation process. The problem is formulated as a MILP model. 

Table 1. Model sets. 

 

 

 

Table 2. Indexes. 

 

 

 

 

Table 3. Decision variables. 

 

  

 

 

  

  

 

Table 4. Parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Row Notations Description 
1 L Loading and unloading locations 
2 O Product type 
3 T Set of containers 

Row Notations Description 
1 g End point of ship's movement 
2 I,j Loading and unloading locations 
3 k Container 
4 o Product type 
5 s Starting point of movement g ≠ s 

Row Notations Description 
1   qk,i,o Amount of product type o at loading location i for container k 

2   tk,i Loading operation time at location i for container k 

3  xk,i,j Binary variable that takes the value of 1 if container k visits loading 
locations i and j, and 0 otherwise 

4  δk,i,j Binary variable that takes the value of 1 if container k involves 
loading location i, and otherwise 0 

Row Notations Description 
1 ci Charging cost due to occupying location i 
2 Ck

max Maximum capacity of container k 
3 di,j Distance between loading location i and loading location j 

4 Do Uncertain demand for products o 
5 Ek,i,j Transport time from location i to location j for container k 

6   M A large positive number 
7 qi

min Minimum feasible loading and unloading volume at location i 

8 qi
max Maximum feasible loading and unloading volume at location i 

9  w1 Weight factor for the total distance traveled by containers 
10  w2 Weight factor for the total costs incurred from passing through loading points 
11  τm Maximum number of loading locations that a container can visit 
12 ƞi,o Binary constant that is 1 if product o can be loaded at location i, and 0 otherwise. 
13 FCk

min Minimum fuel consumption per container 

14 FCk
max Maximum fuel consumption per container 

15 αk Fuel consumption coefficient per container 
16 tk,i

min Minimum time required for container k operations at location i 

17 tk,i
max The maximum time needed for container k operations at location i. 

18 Dk,O The maximum amount of product type o that can be transported to prevent 
environmental pollution by container k, which is determined based on 
environmental regulations. 

20 βk Carbon dioxide conversion factor for container k 
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5.2|Objective Function 

The objective function consists of two main components: 

I. Minimizing total distance traveled by containers. 

II. Minimizing total port loading charges. 

Each component is weighted based on expert judgment, leading to the following formulation: 

Constraints: 

Constraint (1) represents the total demand constraint. Constraints (2) and (3) indicate the allocation constraints 

at loading locations. Constraints (4) and (5) state that each container starts operating from an initial point, s, 

and ends its journey at a final point, g, passing through several ports along the way. Constraint (6) specifies that 

the number of times a port engages in loading operations must be less than or equal to the maximum allowable 

number of operations. 

A classical constraint in the Traveling Salesman Problem (TSP) is the subtour elimination constraint, which 

is also applicable in this study. Constraint (7) represents this constraint, where M is a large positive number and 

min w1 (∑ ∑ ∑ di,jj∈L∪{g}i∈L∪{S}k∈T  xk,i,j)  +  w2 (∑ ∑ cii∈Lk∈T  δk,i).  

s.t.  

∑ ∑ qk,i,oi∈Lk∈T = Dõ,    for all o ∈ O. (1) 

δk,j   (for all k ∈ T , for all j ∈ L ∪ {g}) , i≠ j, ∑ xk,i,ji∈L∪{S} , (2) 

δk,i   (for all k ∈ T , for all j ∈ L ∪ {s}) , i≠ j,   ∑ xk,i,jj∈L∪{g} , (3) 

∑ xk,s,ii∈L  = 1,    (for all k ∈ T), (4) 

∑ xk,igi∈L  = 1,     (for all k ∈ T),  (5) 

∑ δk,ii∈L ≤ τm,     (for all k ∈ T),     (6) 

tk,i + Ek,i,j - tk,j – M (1- xk,i,j)≤ 0,   (for all k ∈ T , for all i ∈ L ∪ {s}, for allj ∈ L ∪ {g}),   (7) 

∑ ∑ qk,i,oo∈Oi∈L ≤ Ck
max,   (for all k ∈ T),   (8) 

δk,i qi
min ≤ ∑ ƞi,oo∈O  qk,i,o,   (for all k ∈ T , for all i ∈ L),   (9) 

∑ ƞi,oo∈O  qk,i,o ≤ δk,i qi
max,   (for all k ∈ T , for all i ∈ L),  (10) 

tk,i ≥ tk,i
min δk,i,j,     for all i , k, i≠ s,  (11) 

tk,i ≤ tk,i
max δk,i,j,     for all i , k, i≠ s, (12) 

∑ qk,i,o𝐢=𝟏 ≤ Dk,O,   for all k,  (13) 

αkEk,i,j ≥ FCk
minxk,i,j,      for all k,  (14) 

αkEk,i,j ≤ FCk
maxxk,i,j,      for all k,   (15) 

βkEk,i,j ≤ FCk
maxxk,i,j,       for all k, (16) 

 xk,i,j ∈ {0,1},   (for all k ∈ T , for all i ∈ L ∪ {s}, for allj ∈ L ∪ {g}), (17) 

δk,i ∈ {0,1},   (for all k ∈ T , for all i ∈ L ∪ {s} ∪ {g}), (18) 

qk,i,o ≥ 0,  (for all k ∈ T, for all i ∈ L, for all o ∈ O), (19) 

tk,i ≥ 0,  (for all k ∈ T , for all i ∈ L ∪ {s} ∪ {g}).  (20) 
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serves as an upper bound for each container's difference in loading dates. Constraint (8) states that the 

transported cargo must not exceed the maximum allowable limit. 

In addition, at each loading and unloading location, the cargo volume must remain within a permitted range 

between the minimum and maximum allowable limits. This restriction is expressed through Constraints (9) and 

(10). 

Constraints (11) and (12) pertain to time window constraints. Constraint (11) sets the minimum, while Constraint  

(12) defines the maximum allowable time for loading operations based on the specified time window. 

Constraint (13) is an environmental constraint related to the green supply chain. This constraint limits the 

amount of toxic materials and gas emissions from container transportation to a predefined threshold 

established by the environmental authority. 

Due to environmental concerns, fuel consumption in container transportation must not exceed a specified 

limit. Moreover, a minimum fuel must be consumed for ship movement and cargo delivery. Constraints (14) 

and (15) define the permissible fuel consumption based on specified standards. 

Constraint (16) limits the allowable carbon dioxide emissions from container transportation. Constraints (17)–

(20) define the conditions for each variable. 

This research introduces fuzzy demand uncertainty compared to the baseline model used in prior studies, 

whereas previous models assumed deterministic demand. 

6|Analysis 

6.1|Genetic Algorithms 

Genetic Algorithms (GA) are a search technique in computer science used to find approximate solutions for 

optimization and search problems. They are a specific type of evolutionary algorithm that utilizes evolutionary 

biology techniques such as inheritance and mutation. This algorithm was first introduced by John Holland 

[23]. 

In essence, GA apply Darwinian principles of natural selection to find optimal formulas for prediction or 

pattern matching. GA are often a strong choice for regression-based forecasting techniques. In artificial 

intelligence, a GA is a programming technique that employs genetic evolution as a problem-solving model. 

The problem to be solved consists of inputs that are transformed into potential solutions through a process 

inspired by genetic evolution. These solutions serve as candidates and are evaluated using a fitness function. 

If the termination condition is met, the algorithm halts. GA are generally iterative, and many of their 

components involve stochastic processes [23]. 

GA consist of the following components: Fitness function, representation, selection, and variation. GA are a 

type of randomized search algorithm inspired by nature. GA have successfully solved classical optimization 

problems, including linear and convex problems, but they are significantly more effective for solving discrete 

and nonlinear problems. One example is the TSP. In nature, the combination of superior chromosomes 

results in better generations, and occasionally, mutations occur in chromosomes that might enhance the next 

generation. GA apply this same principle to problem-solving. 

The process of using GA is as follows: 

I. Introducing the problem solutions as chromosomes. 

II. Defining the fitness function. 

III. Generating the initial population. 

IV. Introducing selection operators. 

V. Introducing reproduction operators. 
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An initial set of solutions is generated randomly or algorithmically in GA. This set of solutions is called the 

initial population, and each solution is referred to as a chromosome. Then, using GA operators, the best 

chromosomes are selected, combined, and mutated. Finally, the current population merges with the new 

population, which results from the combination and mutation of chromosomes. 

The engine of the GA generates an initial population of formulas. Each individual is tested against a dataset, 

and the most suitable individuals (typically 10% of the fittest) are retained while the rest are discarded. The 

fittest individuals undergo crossover (gene exchange) and mutation (random changes in DNA elements). 

Over multiple generations, the GA moves toward creating increasingly precise formulas. While neural 

networks are also nonlinear and nonparametric, the significant advantage of GA is that the results are more 

observable. The final formula is visible to the human user, and conventional statistical techniques can be 

applied to assess confidence levels in the results. GA technology is continuously improving. For example, 

introducing virus equations alongside formulas will challenge weaker solutions, strengthening the overall 

population. Generally, solutions are represented in binary form as 0s and 1s, but other representation methods 

also exist. Evolution begins with a completely random set of entities and continues across successive 

generations. In each generation, the fittest individuals are selected, though not necessarily the best. 

A solution to the given problem is represented as a list of parameters called chromosomes or genomes. 

Chromosomes are typically displayed as simple data strings, though other data structures may also be used. 

Initially, multiple characteristics are randomly generated to create the first generation. Each generation's 

characteristic is evaluated, and its fitness value is measured using the fitness function. 

The next step is to create the second population generation based on selection processes and reproduction 

from selected individuals using genetic operators: chromosome crossover and mutation. 

For each individual, a pair of parents is selected. The selection process is designed so that the fittest elements 

are chosen, but even the weakest elements have a chance of selection to prevent convergence to a local 

optimum. Several selection methods exist, including roulette wheel selection and tournament selection. GA 

typically have a crossover probability ranging between 0.6 and 1, determining the likelihood of offspring 

production. Organisms recombine based on this probability. The crossover of two chromosomes results in 

offspring added to the next generation. This process continues until suitable candidate solutions are found in 

the next generation. The next step involves mutating the newly generated offspring. GA apply a small, fixed 

mutation probability, usually around 0.01 or lower. Based on this probability, the offspring chromosomes are 

randomly altered or mutated, particularly through bit mutations in the chromosome data structure. 

This process leads to a new generation of chromosomes that differs from the previous one. The evolutionary 

cycle continues with selection, crossover, and mutation until a stopping condition is met. 

Stopping conditions in GA 

I. A fixed number of generations is reached. 

II. The computational budget is exhausted (e.g., time/money constraints). 

III. A solution meets the minimum fitness criteria. 

IV. The population reaches a fitness plateau (no further improvement). 

V. Manual intervention or inspection. 

VI. Any combination of the above conditions. 
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Fig. 3. GA flowchart. 

 

6.2|Particle Swarm Optimization 

Introduced by Eberhart and Kennedy [24], PSO is a population-based stochastic optimization technique 

inspired by the social behavior of birds flocking in search of food. 

A flock of birds searches randomly for food within a given space. There is only one piece of food in this 

space, and none of the birds knows its exact location. One of the best strategies is to follow the bird closest 

to the food. This strategy forms the essence of the algorithm. Each solution, referred to as a particle, 

corresponds to a bird in the collective movement pattern of birds. Each particle has a fitness value computed 

by a fitness function. The closer a particle is to the target – analogous to food in the bird movement model – 

the higher its fitness value. Besides, each particle has a velocity that determines its movement. A particle 

moves through the problem space by following the optimal particles at any moment. This way, a PSO is 

randomly initialized and attempts to find the optimal solution by updating generations. Each particle updates 

its state at each step based on two best-known values. The first is the best position the particle has ever 

achieved, which is recorded and stored. This value is referred to as pbest. The second value the algorithm 

uses is the best position found so far by the entire swarm, denoted as gbest [25]. 

Once these best values are determined, the velocity and position of each particle are updated using the 

following equations: 

The right-hand side of Eq. (1) consists of three components. The first term represents the particle's current 

velocity. In contrast, the second and third terms adjust its velocity and steer it toward its personal best 

experience and the best experience of the entire swarm. Suppose the first term of this equation is ignored. In 

v[] = v[] + c1 ∗ rand() ∗ (pbest[] − position []) + c2 ∗ rand() ∗ (gbest[] − position[]).  

position[]  =  position[]  +  v[].  
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that case, the velocity of the particles will only depend on their current position, their best personal experience, 

and the best experience of the swarm. In this case, the best particle in the swarm will remain in its position 

while the others move toward it. Consequently, the swarm movement without the first term of Eq. (1) leads 

to a process where the search space gradually shrinks, and a local search is performed around the best particle. 

On the other hand, if only the first term of Eq. (1) is considered, the particles continue their usual movement 

until they reach the boundary of the search space, effectively performing a global search. The pseudocode 

and flowchart of the PSO algorithm can be seen in Figs. 2 and 3. 

Table 5. Pseudocode of the PSO algorithm. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Flowchart of the PSO algorithm. 

 

7|Algorithm Configuration for the Research Problem 

7.1|Initial Solution Generation 

This section aims to develop algorithms based on genetic and PSO approaches to solve the problem model. 

Initially, an initial solution must be generated. At all stages, the solution must satisfy the given constraints. 

The algorithms are then applied to solve the problem. The solution in this algorithm is represented as a 

For each particle 
Initialize particle 
End For 
Do 
For each particle 
Calculate the fitness value of the particle fp 
/*updating particle’s best fitness value so far)*/ 
If fp is better than pBest 
set current value as the new pBest 
End For 
/*updating population’s best fitness value so far)*/ 
Set gBest to the best fitness value of all particles 
For each particle 
Calculate particle velocity according to equation (1) 
Update particle position according to equation (2) 
End For While maximum iterations OR 
minimum error criteria are not attained        
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sequence. The core idea for generating the initial solution is that each container visits the loading locations 

with the smallest unfulfilled demand and loads as much as possible until the container's capacity is filled. 

Certain conditions must be considered to ensure a feasible initial solution. 

Objective function evaluation 

This research uses the objective function to evaluate and assess new solutions. The algorithm's basis for 

evaluating and replacing new solutions is the following function: 

Neighborhood generation 

The main idea for generating a neighborhood is inspired by the mutation operator used in GA. One element 

from the initial solution is randomly selected, and a new random value within the allowable range is assigned. 

The quality of the new solution is then evaluated using the objective function, and based on the steps of the 

metaheuristic algorithm, it may either be accepted or rejected. 

Numerical problem solving 

Problems of varying sizes were solved in MATLAB to validate the effectiveness of the proposed algorithms. 

Table 6. Results of solving problems of different sizes. 

  

  

 

 

 

 

 

 

 

 

 

 

 

Based on the results obtained from solving problems of different sizes, the following key observations can 

be made: 

I. The GA requires less computation time than the other two approaches. 

II. The GA solution is closer to the optimal solution than the other methods. 

III. Both GA and PSO efficiently solve large-scale problems in less than 30 seconds. 

 

 

 

 

w1 (∑ ∑ ∑ di,jj∈L∪{g}i∈L∪{S}k∈T  xk,i,j) + w2 (∑ ∑ cii∈Lk∈T  δk,i). 
 

Problem  

GAMS  GA  PSO 

Z(×1000 
USD) 

T(S) 
GAP 
(%) 

 Z(×1000 
USD) 

T(S) 
GAP 
(%) 

 Z(×1000 
USD) 

T(S) 
GAP 
(%) 

O-3-j-5 66.5 20 0  66.5 4.6 0  66.5 5.1 0 

O-5-j-5 122.1 21.6 0  122.1 5.2 0  122.1 5.5 0 

O-8-j-5 122 23.7 0  122 6.5 0  122 6.4 0 

O-10-j-5 131.6 25.6 0  131.6 7.5 0  131.6 7.6 0 
O-15-j-5 176.3 26.1 0  184.6 8.3 4  188.3 8.4 6.8 
O-18-j-5 201.568 27.2 0  209.5 8.8 4  214.8 9.1 6.5 
O-20-j-5 236.8 28.4 0  245.7 9.5 3.75  246.8 9.3 4.2 
O-25-j-5 392 28.3 0  396.4 10.4 1.1  401.7 10.2 2.5 
O28-j-5 670.5 30.6 0  681.2 11.6 1.6  688.3 12.1 2.6 
O30-j-5 682.8 33.4 0  696.2 12.4 2  701.4 13.1 2.7 
O33-j-5 708.6 35.8 0  716.1 12.8 1  719.4 12.9 1.5 
O33-j-8 720 37.8 0  730.4 14.2 1.5  735.4 14.5 2.1 
O30-j-8 768 38.5 0  776.7 15.7 1.1  781.2 15.3 1.7 
O30-j-10 854 40.2 0  865 17.3 1.3  869.8 16.9 1.85 
O35-j-13 1006 44.8 0  1026 19.2 2  1034.3 19.1 2.8 
O35-j-15 1138 46.8 0  1151 21.4 1.1  1160 21.1 1.9 
O40-j-18 1428 48.3 0        1447 22.3 1.3  1461 22.5 2.3 
O40-j-20 1508 49.6 0  1528 23.1 1.3  1543 23.6 2.3 
Average 607.4 33.7 0  616.5 12.8 1.5  621.54 12.94 2.32 
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Comparison of optimization approaches 

 

Fig. 5. Comparison of objective function values across three approaches. 

Fig. 6. Comparison of solution time for different approaches. 

Fig. 7. compares the three presented approaches in terms of the difference between the obtained solution and 

the optimal value of the objective function. 

Fig. 7. Comparison of solution gap relative to optimal objective. 

 

8|Conclusion 

This research focuses on developing a scheduling model for container shipping lines within the green supply 

chain, aiming to minimize costs while considering port time windows and demand uncertainty. In the previous 
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chapters, various model developments have been thoroughly examined, and the steps of the work have been 

fully explained. This chapter summarizes the activities, results, and interpretations of the research. Moreover, 

suggestions for better utilization of the model and recommendations for researchers in related fields are 

provided. 

Initially, a comprehensive analysis of existing sources, including books, articles, and dissertations, was 

conducted to understand the research foundations fully. Reviewing the literature and identifying the strengths 

and weaknesses of previous studies provided a solid basis for this research. The final proposed model included 

an objective function to minimize the total costs of the ship, transportation costs, fuel costs, and 

environmental pollution. The main innovations of the model are: 

I. Considering demand uncertainty. 

II. Addressing port time windows. 

III. Evaluating environmental aspects. 

To validate the model, a sample problem was solved using GAMS software. Due to the problem's NP-hard 

nature, GA and PSO were used to solve larger-scale problems. The obtained results demonstrated the 

effectiveness of these algorithms. 

In conclusion, several points and recommendations regarding this research should be highlighted: The 

numerical results indicate the high efficiency of the proposed algorithm in solving large-scale problems within 

a reasonable time. Furthermore, considering port time windows in this problem significantly helps align the 

model with real-world conditions. Moreover, demand uncertainty, one of the critical issues in the supply 

chain, has been incorporated into the model, further increasing its real-world applicability. Pollution and green 

supply chain issues have also been considered in the model to adequately address environmental concerns in 

the supply chain, which is one of the prominent topics in the production space. 
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