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1|Introduction    

The CCR Charnes et al. [1] ratio form of Data Envelopment Analysis (DEA) obtains nonnegative weights 

for inputs and outputs by maximizing the ratio of virtual output with to virtual input, provided that the ratio 

does not exceed one for each Decision Making Unit (DMU) [2], [3]. Applying the Charnes and Cooper [4] 

theory of fractional programming, we can convert the CCR ratio form to the CCR multiplier form. The CCR 
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Abstract 

In this paper, in order to evaluate the performance of a Decision Making Unit (DMU) in a Production Possible Set (PPS) 

with Constant-to-Scale (CRS) technology, we provide models to obtain nonnegative weights for inputs and outputs which 

for the weights, the number of which DMUs for each one its virtual output does not exceed (is less than, if any) its virtual 

input be maximum, provided that for DMU under evaluation, the virtual output will be equal to the virtual input and the 

virtual input will be positive. We call these weights the relatively best weight (the relatively strongest weight, if any) for the 

DMU under evaluation, and if all the weights are positive, we call them the best weight (the strongest weight, if any) for the 

DMU under evaluation. Also, we define efficiency and strictly efficiency (strongly efficiency), respectively, as the ratio of the 

number of DMUs for each one for the relatively best weight and the best weight (the relatively strongest weight); its virtual 

input does not exceed (is less) its virtual input, to the total DMUs. The relatively best weight in input-oriented (the relatively 

strongest weight, if any) indicates the normal vector of a surface in the PPS with CRS assumption that the DMU under 

evaluation is on the surface and the maximum number of which DMUs their performance is no worse than (is better than) 

the DMU under evaluation separate from the rest of DMUs, with the constraint that the virtual input be positive. Accordingly, 

it can be interpreted the rest of the definitions of non-negative weights for inputs and outputs based on separation 

hyperplanes. Also, in this paper, we present the relationship between these definitions of efficiency with efficiency in the 

DEA models with constant returns to scale assumption.  
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  multiplier form obtains negative weights for inputs and outputs by maximizing the virtual output, provided 

that the virtual output does not exceed the virtual input for each DMU and the virtual output is equal to one.  

Now, if in the CCR multiplier form, we replace constraint "the virtual output of DMU under evaluation equal 

to one" with "the virtual output of DMU under evaluation greater than zero", then we can say that the derived 

CCR multiplier form obtains the nonnegative values for the input weights and the output weights by 

maximizing the virtual output, provided that the virtual output does not exceed the virtual input for each 

DMU and the virtual output be greater than zero.  

In other words, the derived CCR multiplier form obtains nonnegative weights for the inputs and the outputs 

of the DMU under evaluation by maximizing the income resulting from the outputs of the DMU, provided 

that the income resulting from the outputs of each DMU does not exceed the cost resulting from the inputs, 

and the cost resulting from the inputs of the DMU under evaluation be positive. Thus, the derived CCR 

multiplier form evaluates DMU under evaluation in the best conditions. 

In this paper, with respect to one's inspiration from the derived CCR multiplier form, to evaluate the 

performance of a DMU in comparison with a set of DMUs, we obtain nonnegative weights for inputs and 

outputs which for the weights, the number of which DMUs for each one its virtual output does not exceed 

(is less than, if any) its virtual input be maximum, provided that for DMU under evaluation, the virtual output 

will be equal to the virtual input and the virtual input will be positive.  

In other words, we are going to obtain negative weights for the inputs and the outputs of DMU under 

evaluation per weighs, the number of which DMUs for each one its income does not exceed (is less than, if 

any) its cost be maximum, provided that for DMU under evaluation, its income will be equal to its cost and 

cost resulting from the inputs of the DMU will be positive [5]. We call these weights the relatively best weight 

(the relatively strongest weight, if any) for the DMU under evaluation, and if all the weights are positive, we 

call them the best weight (the strongest weight, if any) for the DMU under evaluation. 

Also, we define efficiency and strict efficiency (strong efficiency), respectively, as the ratio of the number of 

DMUs for the relatively best weight and the best weight (the relatively strongest weight); those virtual inputs 

do not exceed (is less) those virtual input, to the total DMUs [6]. The relatively best weight (if any, the 

relatively strongest weight) indicates the normal vector of a surface in the Production Possible Set (PPS) with 

returns to scale constant assumption that the DMU under evaluation is on the surface and the maximum 

number of which DMUs their performance are no worse than (is better than) the DMU under evaluation 

separate from the rest of DMUs [7], [8]. In this paper, we present the relationship between these definitions 

of efficiency with efficiency in the DEA models with constant returns to scale assumption [9], [10]. 

2|Preliminaries 

Suppose we have n ≥ 2 peer observed DMUs,{DMUj: j = 1,2, … , n } which produce multiple outputsyrj, (r =

1, … , s), by utilizing multiple inputs xij, (i = 1, … , m).The input and output vectors of DMUj are denoted by xj 

and yj, respectively, and we assume that xj and yj are semipositive, i.e. ,xj ≥ 0, xj ≠ 0 and yj ≥ 0,  yj ≠ 0 for 

i = 1, … , n. We use by (xj, yj) to descript DMUj, and specially use (xo, yo)(oϵ{1,2, … , n}) as the DMU under 

evaluation. Throughout this paper, vectors will be denoted by bold letters. 

2.1|The Charnes, Cooper and Rhodes Model 

The production set Pc of the CCR model [1] is defined as a set of semi-positive (x, y) as follows: 

where (λ1, … , λn) is a semipositive in ℝn.The input-oriented CCR model evaluates the efficiency of each DMUo 

by solving the following linear program: 

Pc = {(x, y)|x ≥ ∑ λjxj&y ≤ ∑ λjyj&λj ≥ 0  j = 1, … , n

n

j=1

n

j=1

},  
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where θ is a scaler. Because xj and yj are semipositive for j = 1,2, … , n , θ∗ > 0. Also since (θ, λ = (λ1, … , λn) 

is a feasible solution to Model (1), where θ = 1, λj = 0(j ≠ o), λo = 1, then θ∗ ≤ 1. Thus 0 < θ∗ ≤

1.θ∗represents the input-oriented CCR-efficiency value of DMUo. 

Definition 1. (Radial efficiency): The performance of DMUo is radial efficient if and only if θ∗ = 1. 

The dual problem of Model (1) is expressed as: 

where vϵℝm and uϵℝs are row vectors and represent dual variables corresponding to (a) and (b), 

respectively.From strong duality theorem θ∗ = z∗ , thus 0 < z∗ ≤ 1 

2.2|The Two Phases of the Charnes, Cooper and Rhodes Model 

The two-phase process for the CCR model evaluates the efficiency of DMUo by solving the following linear 

program: 

where ε > 0 is the non-Archimedian element. The presence of a non-Archimedean element, ε, in the function 

of Model (2) effectively allows the minimization over θ to preempt the optimization involving the slacks 

Definition 2. (CCR-efficient). The performance of DMUo is CCR-efficient if only if an optimal solution 

((θ∗, λ∗, s∗−, s∗+)of the two-phase Model (2) satisfies θ∗ = 1, s−∗ = 0, s+∗ = 0. 

The dual multiplier form of the program Model (2) is expressed as: 

θ∗ = min θ ,

s. t.

∑ λjxj ≤ θxo(a),

n

j=1

∑ λjyj ≥ yo

n

j=1

(b),

λj ≥ 0,   j = 1, … , n,                               

 (1) 

z∗ =  max   ut yo,

s. t.

vtxo = 1,                                       

utyj ≤  vtxj,          j = 1,2, … , n.

u ≥ o, v ≥ o,                               

 (2) 

min θ − ε(∑ si
− +

m

i=1

∑ sr
+)

s

r=1

,

s. t.

∑ λjxij + si
− = θxio , i = 1, … , m(c),

n

j=1

∑ λjyrj − sr
+ = yro

n

j=1

, r = 1, … , s(d),

λj ≥ 0, si
− ≥ 0, sr

+ ≥ 0,   for all  j, for all  i, for all  r,

 (3) 

s− = (s1
−, … , sm

− ), s+ = (s1
+, … , ss

+).  

max ut yo,

s. t.

vtxo = 1,                                          

utyj ≤  vtxj ,   for all  j,                      

u ≥ 1ε, v ≥ 1ε.                        

 (4) 
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  Definition 3. The performance of DMUo is fully efficient if only if an optimal solution (u∗, v∗) of Model (2) 

satisfies ut yo = 1. 

Theorem 1. The CCR-efficient given in Definition 2 is equivalent to that given by Definition 3. 

Proof: See [11]. 

Definition 4. (Reference set) reference set of DMUo denoted by Eo is defined as: 

Theorem 2. The DMUs in Eo are CCR-efficient. 

Proof: See [11]. 

Definition 5. (Extreme CCR-efficient)  DMUo is extreme CCR-efficient if only if Eo = {DMUo}. 

Theorem 3. If DMUo be extreme CCR-efficient, then DMUo is CCR-efficient.  

Proof: See [11]. 

Theorem 4.  DMUo is extreme CCR-efficient if 

Has an optimal objective function value of one. 

Proof: Let DMUo not be extreme CCR-efficient. Then, there exists an optimal solution (θ∗, λ∗, s∗−, s∗+) of 

Model (2) such that a λj
∗ > 0(j ≠ o). Also, since (θ, λ = (λ1, … , λn)) is a feasible solution to Model (4), where 

θ = 1, λj = 0(j ≠ o), λo = 1, thus  θ∗ ≤ 1. Therefore θ∗ − ε ∑ λ∗
j < 1j≠o . Let the solution objective function 

value of Model (4) be less than one, and let (θ̃, λ̃) is an optimal solution of the model, then either θ̃ < 1 or θ̃ =

1 and ∑ λj̃ > 0j≠o ). If θ̃ < 1, DMUo is not extreme CCR-efficient. If θ̃ = 1 and ∑ λj̃ > 0j≠o , then either 

Or  

where 

and 

If (s̃−, s̃+) ≠ (0,0), since (θ̃, λ,̃ s̃−, s̃+) is a feasible solution of Model (2), thus DMUo isn't CCR-efficient, 

therefore DMUo is not extreme CCR-efficient. If (s̃−, s̃+) = (0,0), then either (θ̃, λ,̃ s̃−, s̃+) is an optimal 

solution of Model (2) or isn't. If (θ̃, λ,̃ s̃−, s̃+) be an optimal solution of Model (2), since ∑ λ̃j > 0n
j=1 , thus DMUo 

is not extreme CCR-efficient. If (θ̃, λ,̃ s̃−, s̃+) not be an optimal solution of Model (2), then there exists an 

Eo = {DMUj|jϵ{1, … , n}&λj
∗ > 0 insomeoptimalsolution(θ∗, λ∗, s−∗, s+∗) of model (3)}.  

min θ − ε ∑ λj,

j≠o

s. t.

∑ λjxj ≤ θxo,

n

j=1

∑ λjyj ≥ yo

n

j=1

,

λj ≥ 0,   for all  j.      

 (5) 

(s̃−, s̃+) ≠ (0,0),  

(s̃−, s̃+) = (0,0),  

s̃− = θ̃xo − ∑ λ̃jxj
n
j=1 ,  

s̃+ = ∑ λ̃jyj − yo
n
j=1 .  
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optimal solution (θ∗, λ∗, s∗−, s∗+) of Model (2) such that θ∗ = 1 and (s∗−, s∗+) ≠ (0,0), thus DMUo is not extreme 

CCR-efficient. 

3|Efficiency Analysis of Decision Making Units-based Separation 

Hyperplanes in Production Possible Set with Constant-to-Scale 

Technology 

Definition 6. Let Λc ⊂ ℝm+s be 

We define a map 

By 

where symbol | . | is the cardinality of sets. 

Definition 7. We define a map 

By 

where Λc is defined by Model (6). 

Definition 8. Let (uo, vo)ϵΛc. We say (uo, vo) is a relatively best weight in Λc for DMUoif 

and 

Definition 9. Let (uo, vo)ϵΛc. We say (uo, vo) is the best weight in Λcfor DMUoif 

and 

Definition 10. Let (uo, vo)ϵΛc. We say (uo, vo) is relatively strongest weight in Λc for DMUo if 

and 

Definition 11. Let (uo, vo)ϵΛc. We say (uo, vo) is the strongest weight in Λc for DMUoif 

and 

Λc = {(u, v)|uϵℝs&vϵℝm&(u, v) ≥ (0,0)}. (6) 

fc: Λc → ℕ⋃{0}.  

fc(u, v) = |{DMUj|jϵ{1,2, … , n}&vtxj ≥ utyj}|,      (7) 

gc: Λc → ℕ⋃{0}.  

gc(u, v) = |{DMUj|jϵ{1,2, … , n}&vtxj > utyj}|,      (8) 

vo
t xo = uo

t yo&uo
t yo > 0,  

for all  (u, v)((u, v)ϵΛc&utyo > 0 &vtxo = utyo  ⟹  fc(uo, vo) ≥ fc(u, v)).  

vo
t xo = uo

t yo&(uo, vo) > (0,0),  

for all  (u, v)((u, v)ϵΛc&(u, v) > (0,0)&vtxo = utyo  ⟹  fc(uo, vo) ≥ fc(u, v)).  

vo
t xo = uo

t yo&uo
t yo > 0 &gc(uo, vo) ≥ 1,  

for all  (u, v)((u, v)ϵΛc&utyo > 0 &vtxo = utyo  ⟹  gc(uo, vo) ≥ gc(u, v)).  

vo
t xo = uo

t yo&(uo, vo) > (0,0) &gc(uo, vo) ≥ 1,  
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Remark 1. Since xj and yj are semi-positive, it follows 

Now if  ∑ yro
s
r=1 =  ∑ xio

m
i=1 , then, by taking vt = (1, … ,1)ϵℝm, and ut = (1, … ,1)ϵℝs, we have 

If ∑ yro
s
r=1 > ∑ xio

m
i=1 , then, by taking 

and, 

We have 

Finally if ∑ yro
s
r=1 < ∑ xio

m
i=1  then, by taking 

and 

We have 

This shows that there is not any relatively strongest weight in Λc for DMUo if 

Also, there is no strongest weight in Λc for DMUo if 

Definition 12. (Λc-efficiency) If (uo, vo) be relatively best weight in Λc for DMUo, then  

Λc-efficiency of 

Definition 13. (Λc-efficient)  DMUo is said to be Λc-efficient if Λc-efficiency of DMUo = 1. 

Definition 14. (Strictly Λc-efficiency)  If (uo, vo) be the best weight in Λc, for DMUo then strictly 

Definition 15. (Strictly Λc-efficient)  DMUo is said to be strictly Λc-efficient if strictly Λc-efficiency of DMUo 

= 1. 

for all  (u, v)((u, v)ϵΛc&(u, v) > (0,0)&vtxo = utyo ⟹  gc(uo, vo) ≥ gc(u, v)).  

∑ yro
s
r=1 > 0, ∑ xio

m
i=1 > 0.  

vtxo −  utyo, utyo > 0, u ≥ 1ε, v ≥ 1ε.  

α = (
∑ yro

s
r=1

∑ xio
m
i=1

⁄ ),ut = α(1, … ,1)ϵℝs,  

vt = α(1, … ,1)ϵℝm,  

vtxo −  utyo, utyo > 0, u ≥ 1ε, v ≥ 1ε.  

β = (
∑ xio

m
i=1

∑ yro
s
r=1

⁄ ),  

ut = β(1, … ,1)ϵℝs,  

vt = β(1, … ,1)ϵℝm,  

vtxo − utyo, utyo > 0, u ≥ 1ε,   v ≥ 1ε.  

for all  (u, v)((u, v)ϵΛc&utyo > 0 &vtxo = utyo  ⟹  gc(u, v) = 0).  

for all  (u, v)((u, v)ϵΛc&(u, v) > (0,0)&vtxo = utyo ⟹  gc(u, v) = 0).  

DMUo= 
fc(uo,vo)

n
  

Λc- efficiency = 
fc(uo,vo)

n
.  
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Definition 16. (Strongly Λc-efficiency)  If there is a (uo, vo) relatively strongest weight in Λc for DMUo. Then, 

strongly 

Definition 17. If there is not any relatively strongest weight in Λc for DMUo, then strongly Λc-efficiency =0. 

Definition 18. (Strongly Λc-efficient) DMUo is said to be strongly Λc-efficient if strongly Λc-efficiency of 

DMUo = 1. 

Proposition 1. Let (u̅, v̅) be relatively best weight in Λcfor DMUo, and let (u̅, v̅) > (0,0). Then (u̅, v̅) is the 

best weight in Λc for DMUo. 

Proof: If (u̅, v̅) not be the best weight in Λc for DMUo, then by Definition 4, there is some (ũ, ṽ)ϵΛc such that 

and 

Thus, since xj and yj are semi-positive, ũtyo(= ṽtxo) > 0. Therefore, noting that (u̅, v̅) is relatively best weight 

in Λc for DMUo,. fc(u̅, v̅) ≥ fc(ũ, ṽ) which is in contradiction with the fact that fc(u̅, v̅) < fc(ũ, ṽ). Thus (u̅, v̅) is 

the best weight in Λc for DMUo. 

Proposition 2. Let (uo, vo) be relatively strongest weight in Λc for DMUo, and let (uo, vo) > (0,0). Then 

(uo, vo) is the strongest weight in Λc for DMUo. 

Proof: Similar to the proof of Theorem 2. 

Theorem 5.  Let (u̅, v̅) be relatively best weight in Λc for DMUo, let p = fc(u̅, v̅)  

Letand let t̅ = (t̅1, … , t̅n) with 

Then (u̅, v̅, t)̅ is an optimal solution for the following model 

If (ũ, ṽ, t̃) be an optimal solution of Model (9), then (ũ, ṽ) is a relatively best weight in Λc for DMUo. 

Proof: Since (u̅, v̅) is a relatively best weight in Λc for DMUo, then, by (a1) and (a2), (u̅, v̅, t)̅ is a feasible 

solution to Model (9). Also, since (ũ, ṽ, t̃) is an optimal solution for Model (9), we have 

Therefore 

Λc-efficiency = 
gc(uo,vo)

n−1
.  

(ũ, ṽ) > (0,0), ṽtxo = ũtyo,  

fc(u̅, v̅) < fc(ũ, ṽ),  

{DMUj1
, … , DMUjp

} = {DMUj│jϵ{1, … , n} & v̅txo ≥ u̅tyo}, (a1).  

t̅j = {
0      jϵ{j1, … , jp},

 1      jϵ{1, … , n} − {j1, … , jp}.
(a2)  

min ∑ tj

n

j=1

,

s. t.

vtxo − utyo = 0,   utyo ≥ ε,                     

vtxj − utyj + Μtj ≥ 0,   for all  j,   ( Μ ≫ 0)

u ≥ 0,   v ≥ 0,  tjϵ{0,1}.                         

 (9) 

n − ∑ t̃j ≥ n − ∑ t̅j

n

j=1

n

j=1

.  
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and 

Since (u̅, v̅) is relatively best weight in Λc  for DMUo. Hence, 

Thus, (u̅, v̅, t)̅ is an optimal solution to Model (9), and (ũ, ṽ) is relatively best weight in Λc for DMUo. 

Theorem 6.  Let (u̅, v̅, t)̅ be an optimal solution for the following model 

Then, (u̅, v̅) is relatively best weight in Λc for DMUo. 

Proof: Let (ũ, ṽ) be relatively best weight in Λc for DMUo, let p = fc(ũ, ṽ) with 

Then 

and 

So that, by taking k = ũtyo, û = ũ
k⁄ , and v̂ = ṽ

k⁄ , we have 

Thus (û, v̂, t̂) is a feasible solution for Model (10), where t̂ = (t̂1, … , t̂n) with 

Therefore, (u̅, v̅, t)̅ is an optimal solution for Eq. (10), 

Hence 

by 

Thus, since (ũ, ṽ) is relatively best weight in Λc for DMUo, 

 fc(ũ, ṽ) ≥ fc(u̅, v̅),  

fc(ũ, ṽ) ≤ fc(u̅, v̅).  

fc(ũ, ṽ) = fc(u̅, v̅) = n − ∑ t̅j = n − ∑ t̃j
n
j=1

n
j=1 .  

min ∑ tj

n

j=1

,

s. t.

vtxo = 1,   utyo = 1,                                       

vtxj − utyj + Μtj ≥ 0,   for all  j,   ( Μ ≫ 0)

u ≥ 0,   v ≥ 0,  tjϵ{0,1}.                          

 (10) 

{DMUj1
, … , DMUjp

} = {DMUj|jϵ{1, … , n}&ṽtxo ≥ ũtyo},  

ṽtxo =  ũtyo, ũtyo > 0,  

ṽtxji
− ũtyji

≥ 0, i = 1, … , p.  

(û, v̂) ≥ (0,0),   v̂txo =  ûtyo = 1, v̂txji
− ûtyji

≥ 0,   i = 1, … , p.   (a3).  

t̂j = {
0      jϵ{j1, … , jp},

 1      jϵ{1, … , n} − {j1, … , jp}.
  

n − ∑ t̂j ≤ n − ∑ t̅j
n
j=1

n
j=1 ).  

 fc(û, v̂) ≤ fc(u̅, v̅) (a4),  

(a4),p ≤ fc(û, v̂).  

p = fc(ũ, ṽ) = fc(û, v̂). (a5).  
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Also, since (ũ, ṽ) is relatively best weight in Λc  for DMUo, we have fc(ũ, ṽ) ≥ fc(u̅, v̅), then, by (a3), (a4), and 

(a5), fc(ũ, ṽ) = fc(u̅, v̅), Thus (u̅, v̅) is relatively best weight in Λc  for DMUo. 

Corollary 1. Let (u̅, v̅, t)̅ be an optimal solution of Model (10), then  

Proof: Theorem (6). 

Corollary 2. DMUo is Λc-efficient if and only if the optimal objective function value of Model (10) is zero. 

Proof: Theorem (6). 

Corollary 3. If there is some optimal solution (u̅, v̅, t̅) for Model (10) such that (u̅, v̅) > (0,0), then (u̅, v̅) is the 

best weight in Λc for DMUo. 

Proof: Proposition 1 and Theorem (7). 

Corollary 4. If there is some optimal solution (u̅, v̅, t)̅ for Model (10) such that (u̅, v̅) > (0,0), and ∑ t̅j
n
j=1 = 0, 

then DMUo is strictly Λc-efficient. 

Proof: Proposition 1and Theorem (7). 

Theorem 7. Let (ũ, ṽ, t̃) be an optimal solution for the following model 

Then (ũ, ṽ) is the best weight in Λc for DMUo. 

Proof: First, let us show Model (11) is feasible. Since x j and yj are semi-positive, it follows that 

Now, if ∑ yro
s
r=1 =  ∑ xio

m
i=1 , then, by taking vt = (1, … ,1)ϵℝm, and ut = (1, … ,1)ϵℝs, we have  

If 

Then, by taking 

and 

we have 

If 

Λc-efficiency of DMUo= 
fc(u̅,v̅)

n
=  

n−∑ t̅j
n
j=1

n
.  

min ∑ tj,

n

j=1

s. t.

vtxo − utyo = 0,                                             

vtxj − utyj + Μtj ≥ 0,   for all  j,   ( Μ ≫ 0)

u ≥ 1ε, v ≥ 1ε,  tjϵ{0,1}.                          

 (11) 

∑ yro
s
r=1 > 0, ∑ xio

m
i=1 > 0. 

 

vtxo −  utyo,   u ≥ 1ε,   v ≥ 1ε.  

∑ yro
s
r=1 > ∑ xio

m
i=1 , 

 

α = (
∑ yro

s
r=1

∑ xio
m
i=1

⁄ ), ut = α(1, … ,1)ϵℝs,  

vt = α(1, … ,1)ϵℝm,  

vtxo −  utyo,   u ≥ 1ε,   v ≥ 1ε.  
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Then, by taking 

and  

we have  

Thus (u, v, t), where t is defined by (a1) and (a2), is a feasible solution for Model (11). 

Let (u̅, v̅) be the best weight in Λc for DMUo, let p = fc(u̅, v̅), and let 

Then 

Taking 

We have  

Thus (u̅, v̅, t)̅, where t ̅is defined by (a2), is a feasible solution for Model (11), and since (ũ, ṽ, t̃) is an optimal 

solution of Model (11); therefore, 

Hence fc(ũ, ṽ) ≥ fc(u̅, v̅). Also fc(ũ, ṽ) ≤ fc(u̅, v̅), since (u̅, v̅) is the best weight in Λc  for DMUo. Thus 

Then it follows that also (ũ, ṽ) is the best weight in Λc for DMUo, and (u̅, v̅, t̅) is an optimal solution of Model 

(11). 

Theorem 8. Let (ũ, ṽ, t̃) be an optimal solution for the following model 

Then (ũ, ṽ) is the best weight in Λc for DMUo. 

∑ yro

s

r=1

< ∑ xio

m

i=1

,  

β = (
∑ xio

m
i=1

∑ yro
s
r=1

⁄ ), ut = β(1, … ,1)ϵℝs,  

vt = β(1, … ,1)ϵℝm,  

vtxo −  utyo, u ≥ 1ε,   v ≥ 1ε.  

{DMUj1
, … , DMUjp

} = {DMUj|jϵ{1, … , n}&v̅txo ≥ u̅tyo},  

(u̅, v̅) ≥ (0,0),   v̅txo =  u̅tyo, v̅txji
− u̅tyji

≥ 0,   i = 1, … , p. 
 

k = min {u̅tyo, min
r

{u̅r} , min
i

{v̅i}}, 
 

(u̅, v̅) ≥ k(1,1),   v̅txo =  u̅tyo,   u̅tyo ≥ k(> 0), v̅txji
− u̅tyji

≥ 0,   i = 1, … , p. 
 

n − ∑ t̃j ≥ n − ∑ t̅j
n
j=1

n
j=1 . 

 

fc(ũ, ṽ) = fc(u̅, v̅) = n − ∑ t̅j = n − ∑ t̃j
n
j=1

n
j=1 . 

 

min ∑ tj

n

j=1

,

s. t.

vtxo − utyo = 0,                                             

vtxj − utyj + Μtj ≥ 0,   for all  j,   ( Μ ≫ 0)

u ≥ 1, v ≥ 1,  tjϵ{0,1}.                              

 (12) 
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Proof: Similar to the proof of Theorem 5. 

Corollary 5. Let (u̅, v̅, t)̅ be an optimal solution of Model (12), then strictly 

Proof: Follows from Theorem (8). 

Corollary 6. DMUo is strictly Λc-efficient if only if Model (12) has an optimal objective function value of zero. 

Proof: Follows from Theorem (8). 

Theorem 9. Let (ũ, ṽ, t̃) be an optimal solution for the following model 

where 

If  ∑ t̃jj≠o < n − 1, then (ũ, ṽ) is a relatively strongest weight in Λc for DMUo, but if  ∑ t̃jj≠o = n − 1, then there 

is not any relatively strongest weight in Λc for DMUo.  

Conversely, if there is not any relatively strongest weight in Λc  for DMUo, then the optimal objective function 

value of Model (13) is equal to n − 1, but if there exists a (u̅, v̅)ϵΛc such that (u̅, v̅) is relatively strongest weight 

in Λc for DMUo, then by taking 

With p = gc(u̅, v̅), and 

With 

(u̅, v̅, t)̅ is an optimal solution for Model (13) and ∑ t̅j < n − 1j≠o . 

Proof: Let there be a (u̅, v̅)ϵΛc such that (u̅, v̅) is relatively strongest weight in Λc for DMUo, then gc(u̅, v̅) ≥ 1, 

so by taking that p = gc(u̅, v̅) with 

We have 

So by taking 

Λc-efficiency of DMUo= 
fc(u̅,v̅)

n
=  

n−∑ t̅j
n
j=1

n
.  

min ∑ tj

j≠o

,

s. t.

vtxo − utyo = 0, vtxo ≥ ε,                         

vtxj − utyj + Μtj ≥ ε,   j ≠ o, (Μ ≫ 0),

u ≥ 0,   v ≥ 0,  tjϵ{0,1}, j ≠ o,                  

 (13) 

t̃ = (t̃1, … , t̃o−1, t̃o+1, … , t̃n).  

{DMUj1
, … , DMUjp

} = {DMUj|jϵ{1, … , n}&v̅txj > u̅tyj}  (a6).  

t̅ = (t̅1, … , t̅o−1, t̅o+1, … , t̅n). 
 

t̅j = {
0             jϵ{j1, … , jp},

 1             jϵ{1, … , n} − {j1, … , jp, o}.
( a7)  

{DMUj1
, … , DMUjp

} = {DMUj|jϵ{1, … , n}&v̅txj > u̅tyj},  

u̅ ≥ 0,  v̅ ≥ 0, v̅txo =  u̅tyo , v̅txo > 0, v̅txji
− u̅tyi > 0 ,   i = 1, . . , p. 

 

k = min {u̅tyo, min
i

{v̅txji
− u̅tyi}}, 
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  We have k > 0 and 

Thus (u̅, v̅, t)̅ is a feasible solution for Model (13) where t ̅ is defined by (a6) and (a4), therefore, the optimal 

objective function value of Model (13) is less n − 1. Also, since (ũ, ṽ, t̃) is an optimal solution for the Model 

(13), 

It follows gc(ũ, ṽ) ≥ gc(u̅, v̅). On the other hand, gc(ũ, ṽ) ≤ gc(u̅, v̅), since (u̅, v̅) is relatively strongest weight 

in Λc  for DMUo. Consequently, gc(ũ, ṽ) = gc(u̅, v̅). Thus (u̅, v̅, t)̅ is an optimal solution for Model (13), 

and (ũ, ṽ) is a relatively strongest weight in Λc for DMUo. Also, it is easy to show if there is not any relatively 

strongest weight in Λc for DMUo, then the optimal objective function value of Model (13) is equal to n − 1. 

Theorem 10. Let (ũ, ṽ, t̃) be an optimal solution for the following model 

Where 

If ∑ t̃jj≠o < n − 1, then (ũ, ṽ) is a relatively strongest weight in Λc for DMUo, but if ∑ t̃jj≠o = n − 1, then there 

is not any relatively strongest weight in Λc for DMUo.  

Proof: Similar to the proof of Theorem 10. 

Corollary 7. Let (ũ, ṽ, t̃) be an optimal solution for Model (11), then strictly  

Proof: Theorem (10). 

Corollary 8.  DMUo is strongly Λc-efficiency if only if Model (11) has an optimal objective function value of 

zero. 

Proof: Theorem (10). 

Theorem 11. Let (ũ, ṽ, t̃) be an optimal solution for the following model 

where 

u̅ ≥ 0, v̅ ≥ 0, v̅txo =  u̅tyo , v̅txo ≥ k, v̅txji
− u̅tyi ≥ k ,   i = 1, . . , p. 

 

n − 1 − ∑ t̃j ≥ n − 1j≠o − ∑ t̅jj≠o . 
 

min ∑ tj

j≠o

,

s. t.

vtxo −  utyo = 0, vtxo ≥ 1,                           

vtxj − utyj + Μtj ≥ 1,   j ≠ o, (Μ ≫ 0),

u ≥ 0, v ≥ 0,  tjϵ{0,1}, j ≠ o,                     

 (14) 

t̃ = (t̃1, … , t̃o−1, t̃o+1, … , t̃n).  

Λc-efficiency of DMUo= 
gc(ũ,ṽ)

n−1
=  

n−∑ t̃j
n
j=1

n−1
.  

min ∑ tj

j≠o

,

s. t.

vtxo − utyo = 0,                                              

vtxj − utyj + Μtj ≥ ε,   j ≠ o, (Μ ≫ 0),

u ≥ 1ε,   v ≥ 1ε,  tjϵ{0,1}, j ≠ o,              

 (15) 

t̃ = (t̃1, … , t̃o−1, t̃o+1, … , t̃n).  
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If  ∑ t̃jj≠o < n − 1, then (ũ, ṽ) is a strongest weight in Λc for DMUo, but if ∑ t̃jj≠o = n − 1, then there is not 

any strongest weight in Λc for DMUo.  

If there is not any strongest weight in Λc for DMUo, then the optimal objective function value of Model (11) is 

equal to n − 1, but if there is a (u̅, v̅)ϵΛc such that (u̅, v̅) be the strongest weight in Λc for DMUo, then (u̅, v̅, t)̅, 

where t ̅is defined by (a6) and (a7), is an optimal solution for Model (11), also ∑ t̅j < n − 1j≠o . 

Proof: Similar to the proof of Theorem 5, it can be shown that Model (16) is feasible; also proof of the theorem 

is similar to the proof of Theorem 7. 

Theorem 12. Let (ũ, ṽ, t̃) be an optimal solution for the following model 

where 

If ∑ t̃jj≠o < n − 1, then (ũ, ṽ) is a strongest weight in Λc for DMUo, but if ∑ t̃jj≠o = n − 1, then there is not any 

strongest weight in Λc for DMUo.  

The proof is similar to the proof of the Theorem 7.  

Theorem 13. DMUo is Λc-efficient if only if DMUo is CCR-radial efficient. 

Proof: Let DMUo be Λc-efficient, then, by Corollary 2, the optimal objective function value of Model (10) is 

zero. Thus letting (u̅, v̅, t)̅ be an optimal solution for Model (10), we have 

Thus (u̅, v̅) is an optimal solution for Model (2). Therefore DMUo is CCR-radial efficient. Conversely, let DMUo 

be CCR-radial efficient, and let (ũ, ṽ) be an optimal solution of Model (2), then  

Thus (u̅, v̅, t)̅ where t̅ = 0ϵℝn, is a feasible solution for Model (2); therefore, the optimal objective function 

value of Model (5) is zero. Hence, by Corollary 2, DMUo is Λc-efficient. 

Theorem 14. DMUo is strictly Λc- efficient if only if DMUo is CCR-efficient. 

Proof: Let DMUo is strictly Λc- efficient. Then, by Corollary 6, the optimal objective function value Model (7) is 

zero, thus letting (u̅, v̅, t)̅ be an optimal solution for the model, we have 

Therefore, since xo and yo are semi-positive, it follows v̅txo > 0, u̅tyo > 0. So by taking 

We have 

min ∑ tj

j≠o

,

s. t.

vtxo − utyo = 0,                                               

vtxj − utyj + Μtj ≥ 1,   j ≠ o, (Μ ≫ 0).

u ≥ 1,   v ≥ 1,  tjϵ{0,1}, j ≠ o.                  

 (16) 

t̃ = (t̃1, … , t̃o−1, t̃o+1, … , t̃n).  

u̅ ≥ 0, v̅ ≥ 0,   v̅txo =  u̅tyo = 1, v̅txj − u̅tyj ≥ 0 ,   j = 1, . . , n. 
 

ũ ≥ 0, ṽ ≥ 0,   ṽtxo =  ũtyo = 1, ṽtxj − ũtyj ≥ 0 ,   j = 1, . . , n. 
 

u̅ ≥ 1, v̅ ≥ 1,   v̅txo =  u̅tyo, v̅txj − u̅tyj ≥ 0 ,   j = 1, . . , n. 
 

k =  u̅tyo(= v̅txo), ũ = (u̅
k⁄ ), ṽ = (v̅

k⁄ ), α = (1
k⁄ ),  

ũ ≥ 1α,   ṽ ≥ 1α,   ṽtxo =  ũtyo = 1, ṽtxj − ũtyj ≥ 0 ,   j = 1, . . , n. 
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  Thus (ũ, ṽ) is a feasible solution for Model (4), and since ũtyo = 1, it follows that the optimal objective function 

value of Model (9) is equal to one. Hence, by Corollary 6, DMUo is CCR–efficient. 

Conversely, let DMUo be CCR–efficient, then, by Theorem 1; there exists some optimal solution (û, v̂) for Model 

(4) such that  

Thus, by letting 

and v̿ = (v̂
k⁄ ). We have k > 0 and  

Therefore (u̿, v̿, t)̿, where t̿ = 0ϵℝn, is a feasible solution for Model (7); hence, the optimal objective function 

value of the model is zero. Consequently, by Corollary 6, DMUo is strictly Λc- efficient. 

Theorem 15. DMUo is strongly Λc- efficient if only if DMUo is extreme CCR-efficient. 

Proof: Let DMUo be strongly Λc- efficient. Then, by Corollary 8, the optimal objective function value Model (8) 

is zero, thus letting (u̅, v̅, t)̅ be an optimal solution for the model where 

We have 

Therefore, by taking 

We have 

Thus (ũ, ṽ) is an optimal feasible solution for the following model  

Therefore, by the strong duality theorem, the optimal objective function value of Model (5), which is the dual 

form of Model (9), is equal to one. Hence, by Theorem 2, DMUo is extreme CCR-efficient. Conversely, if DMUo 

is extreme CCR-efficient, then, by Theorem 2 and Corollary 8, DMUo is strongly Λc- efficient. 

Theorem 16. Let DMUo be strongly Λc- efficient, then there exists some (u̅, v̅)ϵΛc such that (u̅, v̅) is also a 

relatively strongest weight in Λc for DMUo and a strongest weight in Λc for DMUo. 

û > 0, v̂ > 0   v̂txo =  ûtyo = 1, v̂txj − ûtyj ≥ 0 ,   j = 1, . . , n. 
 

k = min {min
i

{v̂i} , min
r

{ûr}},u̿ = (û
k⁄ ), 

 

u̿ ≥ 1, v̿ ≥ 1,   v̿txo =  u̿tyo, v̿txj − u̿tyj ≥ 0 ,   j = 1, . . , n. 
 

t̅ = (t̅1, … , t̅o−1, t̅o+1, … , t̅n) = 0ϵℝn−1,  

u̅ ≥ 0, v̅ ≥ 0,   v̅txo − u̅tyo = 0, v̅txo ≥ 1, v̅txj − u̅tyj ≥ 1 ,   j = 1, . . , n. 
 

k = v̅txo(= u̅tyo), ũ = (u̅
k⁄ ), ṽ = (v̅

k⁄ ), and α = (1
k⁄ ), 

 

ũ ≥ 0,   ṽ ≥ 0,   ṽtxo =  ũtyo = 1, ṽtxj − ũtyj ≥ α(> 0),   j ≠ o. 
 

max utyo,

s. t.

vtxo = 1,                 

vtxo − utyo ≥ 0,

vtxj − utyj ≥ ε ,   j ≠ o,                

u ≥ 0,   v ≥ 0.

 (16) 
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Proof: Suppose DMUo is strongly Λc- efficient, then, by Theorem 14, DMUo is extreme CCR-efficient. Thus, by 

Theorem 4, Theorem 3, and Definition 2, it follows that the optimal objective function value of the following 

model is one 

Therefore, by strong duality theorem, the optimal objective function value of the following model, which is 

the dual form of Model (10), is equal to one 

Hence letting (u̅, v̅) be an optimal solution for Model (11), we have 

Since (u̅, v̅, t)̅ where t̅ = 0ϵℝn−1 is an optimal solution also for Model (8) and for Model (11), it follows (u̅, v̅) is 

also a relatively strongest weight in Λc for DMUo and a strongest weight in Λc for DMUo. 

4|Illustrative Example 

In this section, we use the data recorded in Table 1 to illustrate how approaches introduced in Section 3 

perform. These correspond to 13 DMUs, whose efficiency is assessed using one input and two outputs. 

 Table 1. Data set. 

 

 

 

 

 

 

 

 

 

By using the data set from Table 1, we solve Model (3), Model (4), Model (5) and Model (6) for each DMU. The 

results are reported in Table 2. Every model diagnoses efficient units correctly. On the other hand, the 

efficiency scores for inefficient units will differ. 

min θ − ε(∑ si
− +

m

i=1

∑ sr
+)

s

r=1

– ε2 ∑ λj

j≠o

,

s. t.

∑ λjxij + si
− = θxio , i = 1, … , m

n

j=1

,

∑ λjyrj − sr
+ = yro

n

j=1

 , r = 1, … , s,

λj ≥ 0, si
− ≥ 0, sr

+ ≥ 0.   for all  j, for all  i, for all  r,         

 (17) 

max utyo,

s. t.

vtxo = 1,                 

vtxo − utyo ≥ 0,

vtxj − utyj ≥ ε ,   j ≠ o,          

u ≥ 1ε,   v ≥ 1ε.

 (18) 

u̅ ≥ 1ε, v̅ ≥ 1ε, u̅tyo = v̅txo = 1, v̅txj − u̅tyj ≥ ε ,   j ≠ o. 
 

 Input  Output 1 Output 2 

Unit 1 1 1 2.5 
Unit 2 1 2.5 1 
Unit 3 1 2.5 4 
Unit 4 1 3.5 6 
Unit 5 1 5 3.5 
Unit.6 1 5.5 2.5 
Unit.7 1 7 5.5 
Unit.8 1 7 1 
Unit.9 1 8 3.5 
Unit.10 1 5.5 5.75 
Unit.11 1 8 4.5 
Unit.12 1 1.5 2 
Unit.13 1 1.75 6 
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  Table 2. Example results. 

 

 

 

 

 

 

 

 

 

 

 

5|Conclusion 

In Section 3, we provided models to obtain nonnegative weights for inputs and outputs for the weights, the 

number of which DMUs for each one its virtual output does not exceed (is less than, if any) its virtual input 

be maximum, provided that for DMU under evaluation, the virtual output will be equal to the virtual input 

and the virtual input will be positive. We called these weights the relatively best weight (the relatively strongest 

weight, if any) for the DMU under evaluation, and if all the weights were positive, we called them the best 

weight (the strongest weight, if any) for the DMU under evaluation. The relatively best weight (the relatively 

strongest weight, if any) indicates the normal vector of a surface in the PPS with returns to scale constant 

assumption that the DMU under evaluation is on the surface and the maximum number of which DMUs 

their performance is no worse than (is better than) the DMU under evaluation separate from the rest of 

DMUs. Also in this paper, we presented the relationship between these definitions of efficiency with 

efficiency in the DEA models with constant returns to scale assumption. The normal vectors can be applied 

as a criterion for efficiency analysis and ranking of a set of peer DMUs with interval scale data. Especially the 

relatively strongest weight, both indicate extreme CCR-efficiency and provide a performance measure 

DMUo with interval scale inputs and/or outputs. Also the strongest weight can be applied for ranking extreme 

CCR-efficient DMUs and CCR-inefficient DMUs. 
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