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Abstract

Traditional Data Envelopment Analysis (DEA) models measure the relative efficiency of a Decision-Maker Unit
(DMU) with multiple inputs and outputs. One drawback of these models is the neglect of variable indices. In
this paper, the indices are treated as time-varying variables, and we present methods for estimating efficiency and
ranking DMUs.

Keywords: Data envelopment analysis, Decision maker unit.

1| Introduction

The Data Envelopment Analysis (DEA) method is applied to evaluate the performance of Decision-Maker
Units (DMUEs). In this method, outputs are the services provided by an organization, and inputs are the
facilities delivered to DMUs to enable better products and services. DMU efficiency is calculated by
comparing the input and output indices across DMUs. One of the most critical DEA models is the CCR.
Cooper and Rhodes first presented this model in [1].

This model is used for measuring the efficiency of an observed DMU, which is the organization to be
evaluated by the ratio, a linear combination of outputs per linear combination of inputs, i.e., how well a DMU
can convert its inputs into its outputs. Consider n DMUs each using m inputs, Xj = (x1j,x2j, ..., xmj), to
produce s output Yj = (y1j,y2j, ..., ysj). Supposed weights of inputs and outputs are shown respectively in
the form of v (v1, ...,vm) and u(ul, ..., us); thus, relative efficiency is defined as follows:
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Nonlinear model of REp is transformed to a linear model as follows [1], [2]:

CCR:max » Uy,
r=1

s.t.
Dovix, =1,
i=1

Zuryrj _Zvixij <0, j=1...n,
r=1 i1

upv,2g, i=1..m, r=1,.;s.

In some cases, indices are time-varying. In other words, they receive different amounts at different times.
Because indices must be fixed in traditional DEA, models with variable data cannot be solved using traditional
DEA methods, such as the CCR model [3-6]. The objective of this work is to propose a model and method
for estimating efficiency and ranking such DMUs. Therefore, first, the best and worst times for each DMU
are calculated, and then the efficiencies at the indices associated with the best and worst times are estimated.
This paper is organized as follows. We introduce different methods in Section 2. Section 3 presents a method
for estimating the relative efficiency and relative inefficiency of each DMU at the fixed time with respect to
itself at other times. In Section 4, a method is delivered for finding the best and worst times. Section 5
introduces our methodology for solving the problem, based on indices for the best and worst times. In Section
6, a method for ranking DMUs is presented. A numerical example is given in Section 7, and Section 8 indicates
the conclusion.

2| The Decision Maker Units Efficiency with Variable Indices at
Different Times

Suppose yrP(t) is a given level of rth output of pth DMU at the time of t, likewise, xiP(t) is a given level of
#th input of P.th DMU at the time, t. There are m inputs, s outputs, n DMUs, and the domain of t is the
interval [a, b]. We want to estimate the relative efficiency of DMUp with respect to other DMUS. The
calculating methods can be estimated for efficiency at different times. We define efficiency at time t.

Definition 1. It is said that DMUp is efficient at time t if the optimal solution to the model below is 1. And
it is efficient when max0(t) equals 1.

CCR(1):6(t) = max iu,y,p(t),

s.t.

ivixip(t) =1,

DUy (- vix (1) <0, j=1..n,
r=1 i=1

u;Vv; 2, i=1,..m, r=1,..,s.
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The problems with the definition mentioned above are summarized as follows: Each DMU has the best
efficiency at a time that may differ from that of the other DMUs. So, compating DMUs at a fixed time is

neither just nor logical. For example, suppose the indices of three DMU are as follows.

Table 1. Efficiency scotes over time.

Input s Output s
DMU st Day SecI:)nd Day  Third Day  First Day Secgnd Day Third Day  DcstDays for DMUs
1 15 7 11 16 22 11 First day
2 22 4 14 9 41 11 Second day
3 31 11 7 11 17 51 Third day

On the first day, the efficient DMU is DMU1; on the second and third days, the results are DMU2 and
DMUS3, respectively. Therefore, according to the above method, each of the three DMUs is efficient. Still,
under the condition that the indices associated with DMU 1 are considered the first and second days for
DMU 2, and the third day for DMU 3, it results in DMU 1 being inefficient and DMU 2 and 3 being efficient.

Considering the summation of indices can be another method for estimating the efficient DMU.

Definition 2. It is said that DMUp is fully efficient if the optimal solution to the following model is 1.

m b
ACCR:max Y u, j y, (D)t

r=1 a

s.t.

ivi beip(t)dt 1

s b m
z”rjyrj(t)dt_zVaIinj(t)dtSO, j=1,..n,
=1 a i=1 a

uj’vi 28, i:l,...,m, r:l)_”,s‘

Total efficiency can't be convenient, because it is not considered a relation between indices; moteovet, one
DMU may be total efficient, but it is not efficient at any time. To clarify the subject, consider the following
example: Consider three DMUs with one input and one output, as shown in the table below:

Table 2. Three DMUs with one input and one output.

First Day Second Day Third Day Forth Day Sum of the Outputs

DMU Input Output Input Output Input Output Input Output Input Output

1 1 10 2 6 10 3 2 5 15 24
5 7 4 5 3 7 3 6 15 25
3 7 8 4 2 2 8 2 6 15 24

It is seen that on the first and second days, DMUT1 is efficient; on the third and fourth days, DMU?2 is efficient;
and throughout the period, DMU3 is efficient, although it never reached the efficient frontier.

It seems that, to estimate DMUs' efficiency, it is convenient that the DMUs be compared at the best times
and likewise at the worst times. Attention: the best time for each DMU differs from that of other DMUs.
Likewise, the worst times for DMUs differ. Now we propose a method based on the best and worst times
for each DMU. The method is to compare the indices associated with the best time of each DMU with those
of other DMUs. In the same way, indices associated with the worst time of each DMU are compared with
indices associated with the best time of other DMUs. This method is summarized into four steps.

Step 1. It is the relative efficiency of a DMU at a given time with respect to other times for the same DMU.
Step 2. Is finding the best and worst times for all of the DMUs.

Step 3. Is finding the efficiency of each DMU based on the best and the worst times.
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Step 4. Is ranking DMUs. In the parts below, each one of the above-mentioned steps is explained.

3| Relative Efficiency and Inefficiency of a Decision-Maker Unit in
Fixed Time vs. Other Times

Let yrP(t) and xiP(t) be respectively the given levels of rth output and ith input of DMUp at time t. In other
words, indices of DMUP are variable in the interval of [a, b]. There are m inputs, s outputs, and the domain
of tis the interval of [a, b]. We suppose that yrP(t) and xiP(t) are continuous and nonnegative functions. In
this part, we suggest a method for estimating the relative efficiency of a DMU at a fixed time vs. the same
DMU at other times. It means any time is considered a DMU. We define DT(P,t0) as a DMU with inputs

Xp(ty), i=1,...,m and outputs y,_(t,), r=1,..., s. Likewise, we define DT(P) = {DT(P,t)|t e[a,b]}. Thus the
relative efficiency DT (P,t0) vs. Deterministic Time D(T)(P) is defined as follows:

Zuryrp (to)
r=1

Zvixip (to)
RE, (t,) =6 =max —=

Because of

2.UYy (1)
ivixip (t) |

If it continues on the interval [a, b], we can write:

> uy, (1)

maxq-t— 2 =1/w .

tefa,b] | M
D v (1)
i=1

Thus, we have:

zurwyrp(to)
RE, (t,) = max - :
zvixip(to)
i-1
s. t.
2uYs®
’;}—s—, te[ab].
Zvixip(t) W
i-1

u,v,2g, r=1.s, i=1,..m.

By substituting Y, (t,) instead of Wy, (t,) , the above model is transformed as follows:
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DY, ()

FCCRT: max’—
zvl |p(t )

s. t.

iuf fp(t) ZVI Ip(t)<0 tG[a,b],

u,v, g, r=1.s, i=1,..m

Thus, by putting ZV, (o) = a and X, (t,) = 0x;,(t,) in FCCRT, the following model will result:

CCRT:RE,(t,)=0= mualelr Y, (t),
S. t.

ivixip (to) =1,

PARACE Zv. L0<0,  tefab],
u,Vv,2g, r=1.s, i=1,...m

The Above model is the same CCR model, with an infinite number of DMUs. We profess that the optimum
solution of the model below is an upper bound of the optimum solution of Categorical and Combinatorial
Representation Theory (CCRT):

BCCRT:0=max > u,Y,(ty),
u r=1

S. t.

D oviX (t,) =1,
i=1
s b

m b
u [ Y, (Odt =3, [x, (Dt <o,
r=1l a3 i=l 3

u,v,ze, r=1.s,i=1,..m

Theorem 1. Suppose that (u v *,8,) and (T", V", 0,) are respectively optimum solutions of CCRT, BCCRT

models. Therefore
Gp (u*,v*) < Gp u*,v*).

Proof: The logic below shows that (u*, v*) is a feasible solution to BCCRT.

Zu Y, () - Zv. » (<0 tefab] :J(Zur Y, (1) - zv, .p(t)Jdt<o

=N Zu’;jvrp(t)dt—zvjjxip (tydt <0.
r=1 a i=1 a

Therefore, we will have:
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S S
0, =D u, Y, (t) <D UY, (t)) =6,
r=1 r=1

Theorem 2. Suppose (T",V',0,) it is the optimum solution of the BCCRT model and

max (YT, (0 -2 x,(0) =F(t) <0

Therefore, it is an optimal solution of the CCRT model.

Proof: Suppose 0, is a value of optimum associated with the objective function of the CCRT model, then

according to Theorem 10, < ép. Also, because f (t *) is less than or equal to zero, for each t we have:

iﬁ?yr(t) —iVTxi(t) <0.

Thus (T",V',0,), it is a feasible solution of the CCRT model, and as a result, we have ép <0, . Therefore, it

is clear that §p =0, it (U, V', §p) is an optimum solution of the CCRT model. Now we present an Algorithm
for solving the CCRT model by using the linear model of BCCRT.

Algorithm of categorical and combinatorial representation theory

Stepl. Solve the linear model of BCCRT and obtain (U*,\_/*,ép) an optimum solution of the BCCRT model
and an upper bound for the solution space of the CCRT model.

Step 2. Obtain the maximum value of the function that is defined as follows:

S m
F(O) = QT (1) - Vix; (D).
r=1 i=1
Suppose the maximum value of the above function occurs at t, if
S m
20y (1) =D Vix, (1) <0.
r=1 i=1

Then, it is an optimal solution of the CCRT model. Otherwise, we add the following constraint to the BCCRT
model.

Sy, () -2 v (t) 0.

Then return to S#p 7. For estimating the relative inefficiency in DT (P, t0). We apply a similar method above
based on the definition of inefficiency as follows:
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Zuryrp (to)
ivixip (tO)
U, (1)

min =

tefa,b] | M
Zvixip (t)
i=1

IREp(to)zllrrlivn uVv=e.

Similar to what was said, models of CCRT and BCCRT are transformed to the Integrated Common Complex
Root Test (ICCRT)and IBCCRT as follows.

ICCRT: (1/IRE,(t,)) =1/6 =min ) _u, Y, (t,),
u r=1

S. t.

ivixip (t) =1,

DU Y (D)= vix, (1)=0 tefab],
r=1 i=1
u,v,2eg, r=1.s,i=1,..m
IBCCRT:min > u,Y,(t,),

u r=1

S. t.

ivixip (t,) =1,

s b m b
YU Y, @dt=> v, [x, (t)dt =0,
r=1 a i=1 a

u,Vv,2g, r=1.s,i=1,...m.

Then, the algorithm CCRT is transformed into the ICCRT algorithm.

Algorithm of the integrated common complex root test

Step 3. Solve the linear model of IBCCRT and obtain (U",V",6,) an optimum solution of the IBCCRT model

and a lower bound for the solution space of the ICCRT model.

Step 4. Obtain the minimum value of the function that is defined as follows:

S m
F(O) = Ty, (1) - Vix; (D).
r=1 i=1
Suppose the minimum value of the above function happens at t, if
S m
20y (0) =D Vix (1) 0.
r=1 i=1

Then (U",V",0,) , itis the optimum solution of the ICCRT model. Otherwise, we add the following constraint
to the IBCCRT model,
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20y (1) =2 vixi (1) 0.

r=1 i=1
Then return to S#p 3.
4| The Most Efficient and Inefficient Time for a Decision-Maker Unit

In this part, we present a method for obtaining the most efficient and the least efficient DT(P). Suppose we
want to estimate the time at which it has maximum efficiency in a bank. One of the input indices can be
employees' scores; likewise, investment at short and long times can be listed as output indices. The above
indices are changed each time, whereas we have only the values of the indices for a finite days. Therefore, for
each index that is variable, we fit a piecewise linear function to the data. In other words, we make a function
by drawing a line between each pair of adjacent points. However, we make a continuous function for each
index; it is variable, but actually, the variation of indices, in the length of day, is almost very little. Therefore,
we can estimate the relative efficiency of a DMU in a time interval of a day. In other words, we divide the
time interval [a, b] into small parts with length A, and we estimate relative efficiency at partition points. Now
we present an algorithm for obtaining the best and the worst member of DT (P).

Algorithm best (worst) member of deterministic time (P)
Step 5. Fit a piecewise linear function for each variable index.
Step 6. Let

ba

t.=a+iA,i=0,..,
A

b

Is partition of [a b], for any t; , we apply the Algorithm of ICCRT, for estimating the relative efficiency
(inefficiency) of DT(P, t;).

Step 7. For any efficient (inefficient) member of DT (P) obtained at S#p 6, a ranking method is provided.
4.1| A Ranking Method for Efficient Members of Deterministic Time (P)

If the number of efficient members of DT (P) is more than one, we must apply one of the ranking methods
[7—11]. In here, we propose a new ranking method. At first, we define a Virtual DMU, for any DMUj, as T-
DMU;j, and it is defined as follows:

b
inputs of T-DMU, :jxij(t)dt, i=1,..m,

b
outputs of T-DMU; : j Y, (t)dt, r=1,.8.

Suppose a DT (P,to) is efficient at S7p 5 and Step 6 of the algorithm's best member of DT (P). Therefore, to
is an efficient time for DMUp. But the best time is when it is possible to achieve high efficiency in competition
with other DMUs. Therefore, we calculate the efficiency of the DT (P, tg)) T-DMU;, j=1,..,n j# p based

on the CCR model. It is named the RCCRT model.
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RCCRT :S(DT(P,t,)) =max >_u, Y, (t,),
u r=1

s. t.

ivixip(to) =1,

s b m b
Zuerrj(u)du—Zvijxij(u)duso, j=1...n, j=p,
r=1 a i=1 a

u,v,2g, r=1.s,i=1,...m

For any efficient DT (P,t), the RCCRT model is applied. Each one that maximizes the objective function is
the best, and this is shown as best-DT (P). S (Best-DT (P)) is not equal to one because it is not on the
efficiency frontier. Also, if DT (P,to) is Best-DT (P), then to will be named Best-time(p).

4.2 | Ranking Inefficient Deterministic Time

If the number of inefficient members of DT (P) is more than one, we similarly apply the ranking method as
follows:

IRCCRT : IS(DT(P,t,)) =min > u, Y, (t,),
u r=1

S. t.

ivixip (t,) =1,

S b m b

>ou [ Yy Odt =Y v [ (Hdt=0, j=1...n, j=p.
r=1 a i=1 a

u,Vv, e, r=1.s,i=1,...m.

For any inefficient DT (P,t), the IRCCRT model is applied. Each one gaining the least objective function is
the worst and is shown as worst-DT (P). It is obvious that IS (worst -DT (P)) is not equal to one because it
is not on the efficiency frontier. Also, if DT (P,to) is worst-DT (P), then to will be named worst-time(p).

5| Efficiency of Decision-Maker Units with Functional Index

Now we want to calculate the efficiency of DMUp vs. all of the DMUs. We use the CCR model once when
indices are associated with best-DT (k) and once separately at worst-DT (k) for each DMUL. The efficiency
of the DMUs will be specified by the following definitions.

Definition 3. Suppose that, for each DMUK, the indices have been considered as best-DT (k). Also, suppose
DMU, is the unit under evaluation. Therefore, the optimal value of the objective function of the CCR model
is called the relative efficiency at best times and is denoted by Op(best).

Definition 4. Suppose for each DMUJ, indices are associated with worst-DT (k). Also, suppose DMU, is the
unit under evaluation. Therefore, the optimal value of the objective function of the CCR model is called the
relative efficiency at worst times and is denoted by Op(worst). Thus, by solving CCR models according to the
above-mentioned definitions, we obtain Op(best) and Op(worst) for each DMU. Now we define an efficiency
range for DMU,.

Definition 5. The range of efficiency of #he Pth unit is defined as follows:
RP = min(0P(best), OP(worst)),
max(0P(best), 6P(worst) ).
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Definition 6. If R;, is equal to [1,1], then DMU; is efficient (E). But if Ryis equal to [a<1,1] then DMUj is a
Weakly Efficient unit (WE) and otherwise it is inefficient (IE).

6 | Ranking

For ranking the DMUs, efficient units (E), WE units, and inefficient units (IE) are placed respectively.
Ranking efficient DMUs (E) will be done by the following models.

RSCCR :Rs(p) =max > u yw,,
u r=1
S. t.

m
> ovixw, =1,
i=1

S m

D uyb, =D vixb; <0,

r=1 i=1

u,Vv,2g, r=I1.s, i=1,..,m.

In whichyw  xw;, are respectively output and input indices associated with worst-DT (p), andyb, xb;are

respectively output and input indices associated with best-DT (k). Rs (P) is not equal to one because the
indices of DMUp are not on the efficiency frontier. Note that if Rs(P) is greater than Rs(q), then DMUp is
more efficient than DMUq. Ranking WE units will be done according to min (Op(best), Op(worst) ), and finally,
the ranking of inefficient units was ordered according to the mean of RP.

min(0, (best),0, (worst)) + max (6, (best),0 ,(worst))
5 :

mean(R,) =

7| Numerical Example

We perform the above method at twenty banks. We consider four inputs (area, archaism, employee score,
and equipment) and five outputs (Loan savings, other deposits, loan current, long-term investment, and short-
term investments). Area, archaism, and equipment are constant, but other indices are variable. Amounts of
indices have been specified in thirty-eight months, and at the end of each month. For each unit, a fixed
piecewise linear variable index is used. Thus, we have six curves for each unit and a total of one hundred
twenty curves. We select the best (worst) member of DT (P) by setting A=1. It means the criterion of time is
one day. Table 1 shows data associated with DMU one. The constant indices of DMU; are eight, three
thousand, five hundred eighty one million and five hundred fifty two thousand three hundred thirty seven
point of three respectively for archaism, area, and equipment.

The piecewise linear functions of indices of DMU1 have been shown in Fig. 7. Functional indices of
employees' score, associated with twenty DMUs, have been shown in Fjg. 2. We apply the algorithm to find
the best (worst) member of DT (P) for any DMU. Table 2 shows the best times and the worst times of DMUs
in thirty-eight months or one thousand one hundred fifty-seven days. Now, indices are obtained at the best
and worst times using piecewise linear functions. Then we solve the CCR model using best- and worst-time
DMU scores, and thereafter rank the DMUs and solve the RSCCR model (See Table 3).
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Table 1. Indices of DMU 1 for 38 months.

Month  Employee Loan Other Loan Long-Term Short-Term
Score Savings Deposits Current Investment Investments
1 340.99741 15156441131 5.93478E+11 5.023E+11 9.81138E+11  1.29816E+11
2 340.6133054 15486150847  4.79739E+11 5.749E+11 9.75238E+11  1.29178E+11
3 336.8751886 15147750063  5.99063E+11 4912E+11 9.72861E+11  1.32733E+11
4 341.6745722 16227802935  6.34443E+11 5.664E+11 9.67165E+11  1.25776E+11
5 341.7932867 16329743466  6.69817E+11 5.021E+11 6.61973E+11  1.32697E+11
6 338.2901693 18426738249  6.52629E+11 4.936E+11 6.71007E+11  1.35828E+11
7 340.7772709 18760144321  6.04068E+11 6.56E+11 6.91833E+11  1.36808E+11
8 338.7538205 18551494956 5.89279E+11 6.756E+11 7.01078E+11  1.42731E+11
9 336.8991148 18845106575  5.03993E+11 6.19E+11 7.04233E+11  1.59779E+11
10 335.4943076 19516960731  3.73349E+11 5.136E+11 7.03186E+11  1.56556E+11
11 350.9977094 20583912521  4.36225E+11 5.472E+11 7.08022E+11  1.69354E+11
12 348.8346741 18897219011 1.55483E+12 4.868E+11 7.2697E+11 1.56846E+11
13 347.5338595 18572006313  5.09177E+11 5.061E+11 7.34424E+11  1.6576E+11
14 3453115685 19825267128  4.1415E+11 4.647TE+11 7.43651E+11  1.81348E+11
15 340.0823682 19592206863  6.4238E+11 5.793E+11 7.55343E+11  1.90706E+11
16 335.9379133 19730960702 5.52352E+11 4.05E+11 7.72313E+11  1.90767E+11
17 339.1593231 22229233369  3.11657E+11 3.787E+11 7.64483E+11  2.11048E+11
18 339.7501537 21208703053 9.52745E+11 4.718E+11 9.25755E+11  2.38202E+11
19 365.9365962 21992321718  3.89493E+11 477TE+11 790713E+11  1.9374E+11
20 370.5325774 21411480765  3.67521E+11 4.687E+11 7.99221E+11  1.99317E+11
21 372.1248687 25164820317  6.89624E+11 9.547E+11 8.62009E+11  2.21567E+11
22 375.2883735 24571771182 5.78908E+11 437E+11 8.69276E+11  2.01552E+11
23 372.5527615 22894085689  2.86754E+11 3.914E+11 8.64880E+11  2.10385E+11
24 371.4020233 25241207595  8.31076E+11 4.754E+11 8.55755E+11  2.18468E+11
25 367.9021869 24890509495  9.43842FE+11 4.754E+11 8.57446E+11  2.26739E+11
26 366.8483134 24785206500  4.82745E+11 4.483E+11 8.94939E+11  2.34361E+11
27 365.2892351 22930702673  4.10299E+11 4.323E+11 9.0918E+11 2.4576E+11
28 365.9896226 23735097146 3.9839E+11 4.885E+11 9.18187E+11  2.39287E+11
29 374.5125005 21795966355  6.32914E+11 3.682E+11 9.23015E+11  2.30984E+11
30 379.1146945 21208703053  9.52745E+11 9.23E+11 9.25755E+11  2.38202E+11
31 374.1857602 21083602715  5.83187E+11 4.802E+11 9.42186E+11  2.3064E+11
32 376.4482101 20726257952 6.19136E+11 1.257E+12 1.1484E+12 2.37724E+11
33 369.9861592 21129797402 6.1052E+11 8.581E+11 1.13333E+12  3.33788E+11
34 366.5546557 21763727220  1.15892E+12 8.525E+11 1.15639E+12  3.18003E+11
35 364.3849617 26343660128  9.29498E+11 1.567E+12 1.17009E+12  3.17454E+11
36 367.94423061 25046032311 1.83154E+12 1.516E+12 1.20084E+12  3.1153E+11
37 360.0290417 27116587637  9.15333E+11 3.332E+12 1.36597E+12  3.50474E+11
38 359.0287691 27717975406 9.74372E+11 1.513E+12 1.44586E+12  3.60855E+11
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Fig. 1. Curves associated with functional indices of DMU 1.
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Fig. 2. Functional indices of employees' scores associated with twenty DMUs.

Table 2. Best times and worst times for 12 banks at 1...1157 days.

DMUs Worst Times Best Times
DMU1 883 58
DMU2 944 153
DMU3 974 436
DMU4 700 303
DMU5 548 181
DMUG6 670 279
DMU7 487 461
DMUS 91 170
DMU9 1126 1083
DMU10 122 126
DMU11 792 44
DMU12 731 276
DMU13 61 104
DMU14 487 24
DMU15 731 705
DMU16 640 16
DMU17 883 66
DMU18 1127 551
DMU19 1096 244
DMU20 853 611
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Table 1. Efficiency of DMUs and ranking.

Efficiency at  Efficiency at the Efficiency

DMUs Best- Time Worst Time Mean Rs(P) Position Final Rank
1 1 1 1 1.4589 E 6
2 1 1 1 0.8348 E 8
3 1 1 1 1.7959 E 5
4 1 1 1 0.5003 E 11
5 1 1 1 32 E 1
6 1 0.9369 0.96845 W ——-ee- WE 13
7 1 1 1 3.9248 E 3
8 1 1 1 2.2644 E 4
9 1 1 1 1.1112 E 7
10 1 1 1 7.7514 E 2
11 1 0.2563 0.62815 WE 20
12 1 0.4398 0.7199 WE 16
13 1 0.4240 0712 e WE 17
14 1 0.3834 0.6917 e WE 18
15 1 1 1 0.62 E 10
16 1 1 1 0.6425 E 9
17 1 1 1 0.2931 E 12
18 1 0.8432 0.9216 WE 14
19 0.5201 0.3605 0.4403 1E 19
20 0.4671 0.6865 0.5768 1E 15

8| Conclusion

In this paper, we analyzed a new DEA in which some indices are time-dependent.

For the calculation of the relative efficiency of the units, we selected indices in the following forms: 1) Indices
associated with the best time of each unit are selected. The best time of a unit is the time at which the unit is
in its best position. On the other hand, if we suppose indices associated with different times of a unit make
the virtual units, then the virtual unit associated with the best time is efficient against all of the virtual units.
In fact, we can say that in this form, indices are selected by the own DMU. Eventually, the efficiency of units
is calculated at best times. 2) Indices associated with the worst time of each unit are selected. The worst time
for a unit is the time that it is in the worst position. On the other hand, the virtual unit associated with the
worst time is inefficient against all of the virtual units. In fact, in this form, the indices of a DMU are selected
by the other DMUs. Thus, the efficiency of units is calculated at worst times, and 3) Indices associated with
the unit under evaluation are selected at best times, and indices associated with other units are selected at
worst times. This form is applied for ranking.

Finally, for each unit, we have a range of efficiency that has been obtained at Form 1 and Form 2. Therefore,
units are divided into efficient units, WE units, and inefficient units. Efficient units are efficient at both forms.
WE units are only efficient in one form. Inefficient units are inefficient in both forms. For ranking, efficient
units are ranked first according to Form 3. The next time, WE units are ranked according to the minimum
efficiency associated with form 1 or form 2. At the end of time, inefficient units are ranked according to the
mean of efficiency associated with form 1 or form 2.
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