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1|Introduction    

The Data Envelopment Analysis (DEA) method is applied to evaluate the performance of Decision-Maker 

Units (DMUs). In this method, outputs are the services provided by an organization, and inputs are the 

facilities delivered to DMUs to enable better products and services. DMU efficiency is calculated by 

comparing the input and output indices across DMUs. One of the most critical DEA models is the CCR. 

Cooper and Rhodes first presented this model in [1]. 

This model is used for measuring the efficiency of an observed DMU, which is the organization to be 

evaluated by the ratio, a linear combination of outputs per linear combination of inputs, i.e., how well a DMU 

can convert its inputs into its outputs. Consider n DMUs each using m inputs, Xj = (x1j, x2j, … , xmj), to 

produce s output Yj = (y1j, y2j, … , ysj). Supposed weights of inputs and outputs are shown respectively in 

the form of v (v1, … , vm) and u(u1, … , us); thus, relative efficiency is defined as follows: 
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Nonlinear model of REP is transformed to a linear model as follows [1], [2]: 

In some cases, indices are time-varying. In other words, they receive different amounts at different times. 

Because indices must be fixed in traditional DEA, models with variable data cannot be solved using traditional 

DEA methods, such as the CCR model [3–6]. The objective of this work is to propose a model and method 

for estimating efficiency and ranking such DMUs. Therefore, first, the best and worst times for each DMU 

are calculated, and then the efficiencies at the indices associated with the best and worst times are estimated. 

This paper is organized as follows. We introduce different methods in Section 2. Section 3 presents a method 

for estimating the relative efficiency and relative inefficiency of each DMU at the fixed time with respect to 

itself at other times. In Section 4, a method is delivered for finding the best and worst times. Section 5 

introduces our methodology for solving the problem, based on indices for the best and worst times. In Section 

6, a method for ranking DMUs is presented. A numerical example is given in Section 7, and Section 8 indicates 

the conclusion. 

2|The Decision Maker Units Efficiency with Variable Indices at 

Different Times 

Suppose yrP(t) is a given level of rth output of pth DMU at the time of t, likewise, xiP(t) is a given level of 

ith input of P.th DMU at the time, t. There are m inputs, s outputs, n DMUs, and the domain of t is the 

interval [a, b]. We want to estimate the relative efficiency of DMUp with respect to other DMUS. The 

calculating methods can be estimated for efficiency at different times. We define efficiency at time t. 

Definition 1. It is said that DMUp is efficient at time t if the optimal solution to the model below is 1. And 

it is efficient when maxθ(t) equals 1. 
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  The problems with the definition mentioned above are summarized as follows: Each DMU has the best 

efficiency at a time that may differ from that of the other DMUs. So, comparing DMUs at a fixed time is 

neither just nor logical. For example, suppose the indices of three DMU are as follows. 

Table 1. Efficiency scores over time. 

 

On the first day, the efficient DMU is DMU1; on the second and third days, the results are DMU2 and 

DMU3, respectively. Therefore, according to the above method, each of the three DMUs is efficient. Still, 

under the condition that the indices associated with DMU 1 are considered the first and second days for 

DMU 2, and the third day for DMU 3, it results in DMU 1 being inefficient and DMU 2 and 3 being efficient. 

Considering the summation of indices can be another method for estimating the efficient DMU.  

Definition 2. It is said that DMUp is fully efficient if the optimal solution to the following model is 1. 

Total efficiency can't be convenient, because it is not considered a relation between indices; moreover, one 

DMU may be total efficient, but it is not efficient at any time. To clarify the subject, consider the following 

example: Consider three DMUs with one input and one output, as shown in the table below: 

Table 2. Three DMUs with one input and one output. 

 

 

 

 

It is seen that on the first and second days, DMU1 is efficient; on the third and fourth days, DMU2 is efficient; 

and throughout the period, DMU3 is efficient, although it never reached the efficient frontier. 

It seems that, to estimate DMUs' efficiency, it is convenient that the DMUs be compared at the best times 

and likewise at the worst times. Attention: the best time for each DMU differs from that of other DMUs. 

Likewise, the worst times for DMUs differ. Now we propose a method based on the best and worst times 

for each DMU. The method is to compare the indices associated with the best time of each DMU with those 

of other DMUs. In the same way, indices associated with the worst time of each DMU are compared with 

indices associated with the best time of other DMUs. This method is summarized into four steps. 

Step 1. It is the relative efficiency of a DMU at a given time with respect to other times for the same DMU. 

Step 2. Is finding the best and worst times for all of the DMUs. 

Step 3. Is finding the efficiency of each DMU based on the best and the worst times. 

DMU 
                        Input s                      Output s 

Best Days for DMUs 
First  Day Second Day Third Day First Day Second Day Third Day 

1 15 7 11 16 22 11 First day 
2 22 4 14 9 41 11 Second day 
3 31 11 7 11 17 51 Third day 
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Sum of the Outputs Forth Day Third Day Second Day First Day  

Output Input Output Input Output Input Output Input Output Input DMU 

24 15 5 2 3 10 6 2 10 1 1 
25 15 6 3 7 3 5 4 7 5 2 
24 15 6 2 8 2 2 4 8 7 3 
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Step 4. Is ranking DMUs. In the parts below, each one of the above-mentioned steps is explained . 

3|Relative Efficiency and Inefficiency of a Decision-Maker Unit in 

Fixed Time vs. Other Times 

Let yrP(t) and xiP(t) be respectively the given levels of rth output and ith input of DMUP at time t. In other 

words, indices of DMUP are variable in the interval of [a, b]. There are m inputs, s outputs, and the domain 

of t is the interval of [a, b]. We suppose that yrP(t) and xiP(t) are continuous and nonnegative functions. In 

this part, we suggest a method for estimating the relative efficiency of a DMU at a fixed time vs. the same 

DMU at other times. It means any time is considered a DMU. We define DT(P,t0) as a DMU with inputs 

ip 0x (t ),  i 1, ,m=  and outputs rp 0y (t ),  r 1 , ,  s= . Likewise, we define DT(P) DT(P,t) t [a,b]}=  . Thus the 

relative efficiency DT (P,t0) vs. Deterministic Time D)T((P) is defined as follows: 

Because of 

If it continues on the interval [a, b], we can write: 

Thus, we have: 

By substituting rp 0Y (t )  instead of rp 0wy (t ) , the above model is transformed as follows: 
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Thus, by putting  
m

i ip 0

i 1

1
v x (t )

q=

=  and ip 0 ip 0X (t ) qx (t )= in FCCRT, the following model will result: 

The Above model is the same CCR model, with an infinite number of DMUs. We profess that the optimum 

solution of the model below is an upper bound of the optimum solution of Categorical and Combinatorial 

Representation Theory (CCRT): 

Theorem 1. Suppose that (u ∗, v ∗, θp) and ( * *

pu , v ,θ ) are respectively optimum solutions of CCRT, BCCRT 

models. Therefore 

Proof: The logic below shows that (u*, v*) is a feasible solution to BCCRT. 

Therefore, we will have: 
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Theorem 2. Suppose * *

p(u , v ,θ ) it is the optimum solution of the BCCRT model and  

Therefore, it is an optimal solution of the CCRT model. 

Proof: Suppose pθ  is a value of optimum associated with the objective function of the CCRT model, then 

according to Theorem 1
p pθ θ .  Also, because f (t ∗) is less than or equal to zero, for each t we have:  

Thus * *

p(u , v ,θ ) , it is a feasible solution of the CCRT model, and as a result, we have 
p pθ θ . Therefore, it 

is clear that 
p pθ θ=  it * *

p(u , v ,θ ) is an optimum solution of the CCRT model. Now we present an Algorithm 

for solving the CCRT model by using the linear model of BCCRT. 

Algorithm of categorical and combinatorial representation theory 

Step1. Solve the linear model of BCCRT and obtain * *

p(u , v ,θ )  an optimum solution of the BCCRT model 

and an upper bound for the solution space of the CCRT model. 

Step 2. Obtain the maximum value of the function that is defined as follows: 

Suppose the maximum value of the above function occurs at t*, if 

Then, it is an optimal solution of the CCRT model. Otherwise, we add the following constraint to the BCCRT 

model. 

Then return to Step 1. For estimating the relative inefficiency in DT (P, t0). We apply a similar method above 

based on the definition of inefficiency as follows: 
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Similar to what was said, models of CCRT and BCCRT are transformed to the Integrated Common Complex 

Root Test (ICCRT)and IBCCRT as follows. 

Then, the algorithm CCRT is transformed into the ICCRT algorithm. 

Algorithm of the integrated common complex root test 

Step 3. Solve the linear model of IBCCRT and obtain * *

p(u , v ,θ )  an optimum solution of the IBCCRT model 

and a lower bound for the solution space of the ICCRT model. 

Step 4. Obtain the minimum value of the function that is defined as follows: 

Suppose the minimum value of the above function happens at t*, if 

Then * *

p(u , v ,θ )  , it is the optimum solution of the ICCRT model. Otherwise, we add the following constraint 

to the IBCCRT model,  

s

r rp 0

r 1

m

i ip 0

i 1
p 0 su,v

r rp

r 1

m
t [a ,b]

i ip

i 1

u y (t )

v x (t )

IRE (t ) 1 / min ,    u,v ε.

u y (t)

min

v x (t)

=

=

=



=

= 
 
 
 
 
 
  









  

s

p 0 r rp 0
u

r 1

m

i ip 0

i 1

s m

r rp i ip

r 1 i 1

r i

ICCRT : (1 / IRE (t )) 1 / θ min u Y (t ),

s. t.

v X (t ) 1,

u Y (t) v x (t) 0  t [a,b],    

u ,v ε,   r 1...s, i 1,...,m.

=

=

= =

= =

=

−  

 = =





 

  

s

r rp 0
u

r 1

m

i ip 0

i 1

b bs m

r rp i ip

r 1 i 1a a

r i

IBCCRT : min u Y (t ),

s. t.

v X (t ) 1,

u Y (t)dt v x (t)dt 0,        

u ,v ε,   r 1...s, i 1,...,m.

=

=

= =

=

− 

 = =





  

  

s m

* *

r r i i

r 1 i 1

F(t) ( u y (t) v x (t)).
= =

= −    

s m

* * * *

r r i i

r 1 i 1

u y (t ) v x (t ) 0.
= =

−     



 Abbassbandi and Hashemi Germezi | Res. Ann. Ind. Syst. Eng. 1(4) (2025) 262-275 

 

269

 

  

Then return to Step 3. 

4|The Most Efficient and Inefficient Time for a Decision-Maker Unit 

In this part, we present a method for obtaining the most efficient and the least efficient DT(P). Suppose we 

want to estimate the time at which it has maximum efficiency in a bank. One of the input indices can be 

employees' scores; likewise, investment at short and long times can be listed as output indices. The above 

indices are changed each time, whereas we have only the values of the indices for a finite days. Therefore, for 

each index that is variable, we fit a piecewise linear function to the data. In other words, we make a function 

by drawing a line between each pair of adjacent points. However, we make a continuous function for each 

index; it is variable, but actually, the variation of indices, in the length of day, is almost very little. Therefore, 

we can estimate the relative efficiency of a DMU in a time interval of a day. In other words, we divide the 

time interval [a, b] into small parts with length Δ, and we estimate relative efficiency at partition points. Now 

we present an algorithm for obtaining the best and the worst member of DT (P). 

Algorithm best (worst) member of deterministic time (P) 

Step 5. Fit a piecewise linear function for each variable index. 

Step 6. Let 

Is partition of [a b], for any it  , we apply the Algorithm of ICCRT, for estimating the relative efficiency 

(inefficiency) of DT(P, ti). 

Step 7. For any efficient (inefficient) member of DT (P) obtained at Step 6, a ranking method is provided. 

4.1|A Ranking Method for Efficient Members of Deterministic Time (P) 

 If the number of efficient members of DT (P) is more than one, we must apply one of the ranking methods 

[7–11]. In here, we propose a new ranking method. At first, we define a Virtual DMU, for any DMUj, as T-

DMUj, and it is defined as follows: 

Suppose a DT (P,t0) is efficient at Step 5 and Step 6 of the algorithm's best member of DT (P). Therefore, t0 

is an efficient time for DMUp. But the best time is when it is possible to achieve high efficiency in competition 

with other DMUs. Therefore, we calculate the efficiency of the DT (P, t0) jT DMU ,  j 1,...,n  j p− =   based 

on the CCR model. It is named the RCCRT model. 
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For any efficient DT (P,t), the RCCRT model is applied. Each one that maximizes the objective function is 

the best, and this is shown as best-DT (P). S (Best-DT (P)) is not equal to one because it is not on the 

efficiency frontier. Also, if DT (P,t0) is Best-DT (P), then t0 will be named Best-time(p). 

4.2|Ranking Inefficient Deterministic Time 

If the number of inefficient members of DT (P) is more than one, we similarly apply the ranking method as 

follows: 

For any inefficient DT (P,t), the IRCCRT model is applied. Each one gaining the least objective function is 

the worst and is shown as worst-DT (P). It is obvious that IS (worst -DT (P)) is not equal to one because it 

is not on the efficiency frontier. Also, if DT (P,t0) is worst-DT (P), then t0 will be named worst-time(p). 

5|Efficiency of Decision-Maker Units with Functional Index 

Now we want to calculate the efficiency of DMUp vs. all of the DMUs. We use the CCR model once when 

indices are associated with best-DT (k) and once separately at worst-DT (k) for each DMUk. The efficiency 

of the DMUs will be specified by the following definitions. 

Definition 3. Suppose that, for each DMUk, the indices have been considered as best-DT(k). Also, suppose 

DMUp is the unit under evaluation. Therefore, the optimal value of the objective function of the CCR model 

is called the relative efficiency at best times and is denoted by θP(best).  

Definition 4. Suppose for each DMUk, indices are associated with worst-DT (k). Also, suppose DMUp is the 

unit under evaluation. Therefore, the optimal value of the objective function of the CCR model is called the 

relative efficiency at worst times and is denoted by θP(worst). Thus, by solving CCR models according to the 

above-mentioned definitions, we obtain θP(best) and θP(worst) for each DMU. Now we define an efficiency 

range for DMUp. 

Definition 5. The range of efficiency of the Pth unit is defined as follows: 
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Definition 6. If Rp is equal to [1,1], then DMUp is efficient (E). But if Rp is equal to [a<1,1] then DMUp is a 

Weakly Efficient unit (WE) and otherwise it is inefficient (IE). 

6|Ranking 

For ranking the DMUs, efficient units (E), WE units, and inefficient units (IE) are placed respectively. 

Ranking efficient DMUs (E) will be done by the following models. 

In which rpyw  ipxw are respectively output and input indices associated with worst-DT (p), and rjyb  ijxb are 

respectively output and input indices associated with best-DT (k). Rs (P) is not equal to one because the 

indices of DMUp are not on the efficiency frontier. Note that if Rs(P) is greater than Rs(q), then DMUp is 

more efficient than DMUq. Ranking WE units will be done according to min (θP(best), θP(worst) ), and finally, 

the ranking of inefficient units was ordered according to the mean of RP. 

7|Numerical Example 

We perform the above method at twenty banks. We consider four inputs (area, archaism, employee score, 

and equipment) and five outputs (Loan savings, other deposits, loan current, long-term investment, and short-

term investments). Area, archaism, and equipment are constant, but other indices are variable. Amounts of 

indices have been specified in thirty-eight months, and at the end of each month. For each unit, a fixed 

piecewise linear variable index is used. Thus, we have six curves for each unit and a total of one hundred 

twenty curves. We select the best (worst) member of DT (P) by setting ∆=1. It means the criterion of time is 

one day. Table 1 shows data associated with DMU one. The constant indices of DMU1 are eight, three 

thousand, five hundred eighty one million and five hundred fifty two thousand three hundred thirty seven 

point of three respectively for archaism, area, and equipment. 

The piecewise linear functions of indices of DMU1 have been shown in Fig. 1. Functional indices of 

employees' score, associated with twenty DMUs, have been shown in Fig. 2. We apply the algorithm to find 

the best (worst) member of DT (P) for any DMU. Table 2 shows the best times and the worst times of DMUs 

in thirty-eight months or one thousand one hundred fifty-seven days. Now, indices are obtained at the best 

and worst times using piecewise linear functions. Then we solve the CCR model using best- and worst-time 

DMU scores, and thereafter rank the DMUs and solve the RSCCR model (See Table 3). 

 

 

 

s

r rp
u

r 1

m

i ip

i 1

s m

r rj i ij

r 1 i 1

r i

RSCCR : Rs(p) max u yw ,

s. t.

v xw 1,

u yb v xb 0,       

u ,v ε,   r 1...s,  i 1,...,m.

=

=

= =

=

=

− 

 = =





 

  

p p p p

p

min(θ (best),θ (worst)) max(θ (best),θ (worst))
mean(R ) .

2

+
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  Table 1. Indices of DMU 1 for 38 months. 

 

 

 

Fig. 1. Curves associated with functional indices of DMU 1. 

 

Month Employee  
Score 

Loan 
Savings 

Other 
Deposits 

Loan 
Current  

Long-Term 
Investment  

Short-Term 
Investments 

1 340.99741 15156441131 5.93478E+11 5.023E+11 9.81138E+11 1.29816E+11 
2 340.6133054 15486150847 4.79739E+11 5.749E+11 9.75238E+11 1.29178E+11 
3 336.8751886 15147750063 5.99063E+11 4.912E+11 9.72861E+11 1.32733E+11 
4 341.6745722 16227802935 6.34443E+11 5.664E+11 9.67165E+11 1.25776E+11 
5 341.7932867 16329743466 6.69817E+11 5.021E+11 6.61973E+11 1.32697E+11 
6 338.2901693 18426738249 6.52629E+11 4.936E+11 6.71007E+11 1.35828E+11 
7 340.7772709 18760144321 6.04068E+11 6.56E+11 6.91833E+11 1.36808E+11 
8 338.7538205 18551494956 5.89279E+11 6.756E+11 7.01078E+11 1.42731E+11 
9 336.8991148 18845106575 5.03993E+11 6.19E+11 7.04233E+11 1.59779E+11 
10 335.4943076 19516960731 3.73349E+11 5.136E+11 7.03186E+11 1.56556E+11 
11 350.9977094 20583912521 4.36225E+11 5.472E+11 7.08022E+11 1.69354E+11 
12 348.8346741 18897219011 1.55483E+12 4.868E+11 7.2697E+11 1.56846E+11 
13 347.5338595 18572006313 5.09177E+11 5.061E+11 7.34424E+11 1.6576E+11 
14 345.3115685 19825267128 4.1415E+11 4.647E+11 7.43651E+11 1.81348E+11 
15 340.0823682 19592206863 6.4238E+11 5.793E+11 7.55343E+11 1.90706E+11 
16 335.9379133 19730960702 5.52352E+11 4.05E+11 7.72313E+11 1.90767E+11 
17 339.1593231 22229233369 3.11657E+11 3.787E+11 7.64483E+11 2.11048E+11 
18 339.7501537 21208703053 9.52745E+11 4.718E+11 9.25755E+11 2.38202E+11 
19 365.9365962 21992321718 3.89493E+11 4.777E+11 7.90713E+11 1.9374E+11 
20 370.5325774 21411480765 3.67521E+11 4.687E+11 7.99221E+11 1.99317E+11 
21 372.1248687 25164820317 6.89624E+11 9.547E+11 8.62069E+11 2.21567E+11 
22 375.2883735 24571771182 5.78908E+11 4.37E+11 8.69276E+11 2.01552E+11 
23 372.5527615 22894085689 2.86754E+11 3.914E+11 8.64886E+11 2.10385E+11 
24 371.4020233 25241207595 8.31076E+11 4.754E+11 8.55755E+11 2.18468E+11 
25 367.9021869 24890509495 9.43842E+11 4.754E+11 8.57446E+11 2.26739E+11 
26 366.8483134 24785206500 4.82745E+11 4.483E+11 8.94939E+11 2.34361E+11 
27 365.2892351 22930702673 4.10299E+11 4.323E+11 9.6918E+11 2.4576E+11 
28 365.9896226 23735097146 3.9839E+11 4.885E+11 9.18187E+11 2.39287E+11 
29 374.5125005 21795966355 6.32914E+11 3.682E+11 9.23015E+11 2.30984E+11 
30 379.1146945 21208703053 9.52745E+11 9.23E+11 9.25755E+11 2.38202E+11 
31 374.1857602 21083602715 5.83187E+11 4.802E+11 9.42186E+11 2.3064E+11 
32 376.4482101 20726257952 6.19136E+11 1.257E+12 1.1484E+12 2.37724E+11 
33 369.9861592 21129797402 6.1052E+11 8.581E+11 1.13333E+12 3.33788E+11 
34 366.5546557 21763727220 1.15892E+12 8.525E+11 1.15639E+12 3.18003E+11 
35 364.3849617 26343660128 9.29498E+11 1.567E+12 1.17009E+12 3.17454E+11 
36 367.9442361 25046032311 1.83154E+12 1.516E+12 1.20084E+12 3.1153E+11 
37 360.0290417 27116587637 9.15333E+11 3.332E+12 1.36597E+12 3.50474E+11 
38 359.0287691 27717975406 9.74372E+11 1.513E+12 1.44586E+12 3.60855E+11 
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Fig. 2. Functional indices of employees' scores associated with twenty DMUs. 

 

Table 2. Best times and worst times for 12 banks at 1…1157 days. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Best Times Worst Times DMUs 

58 883 DMU1 
153 944 DMU2 
436 974 DMU3 
303 700 DMU4 
181 548 DMU5 
279 670 DMU6 
461 487 DMU7 
170 91 DMU8 
1083 1126 DMU9 
126 122 DMU10 
44 792 DMU11 
276 731 DMU12 
104 61 DMU13 
24 487 DMU14 
705 731 DMU15 
16 640 DMU16 
66 883 DMU17 
551 1127 DMU18 
244 1096 DMU19 
611 853 DMU20 
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  Table 1. Efficiency of DMUs and ranking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8|Conclusion 

In this paper, we analyzed a new DEA in which some indices are time-dependent. 

For the calculation of the relative efficiency of the units, we selected indices in the following forms: 1) Indices 

associated with the best time of each unit are selected. The best time of a unit is the time at which the unit is 

in its best position. On the other hand, if we suppose indices associated with different times of a unit make 

the virtual units, then the virtual unit associated with the best time is efficient against all of the virtual units. 

In fact, we can say that in this form, indices are selected by the own DMU. Eventually, the efficiency of units 

is calculated at best times. 2) Indices associated with the worst time of each unit are selected. The worst time 

for a unit is the time that it is in the worst position. On the other hand, the virtual unit associated with the 

worst time is inefficient against all of the virtual units. In fact, in this form, the indices of a DMU are selected 

by the other DMUs. Thus, the efficiency of units is calculated at worst times, and 3) Indices associated with 

the unit under evaluation are selected at best times, and indices associated with other units are selected at 

worst times. This form is applied for ranking.  

 Finally, for each unit, we have a range of efficiency that has been obtained at Form 1 and Form 2. Therefore, 

units are divided into efficient units, WE units, and inefficient units. Efficient units are efficient at both forms. 

WE units are only efficient in one form. Inefficient units are inefficient in both forms. For ranking, efficient 

units are ranked first according to Form 3. The next time, WE units are ranked according to the minimum 

efficiency associated with form 1 or form 2. At the end of time, inefficient units are ranked according to the 

mean of efficiency associated with form 1 or form 2. 
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DMUs 
Efficiency at 
Best- Time 

Efficiency at the 
Worst Time 

Mean Rs(P) 
Efficiency 
Position 

Final Rank  

1 1 1 1 1.4589 E 6 
2 1 1 1 0.8348 E 8 
3 1 1 1 1.7959 E 5 
4 1 1 1 0.5003 E 11 
5 1 1 1 32 E 1 
6 1 0.9369 0.96845 --------- WE 13 
7 1 1 1 3.9248 E 3 
8 1 1 1 2.2644 E 4 
9 1 1 1 1.1112 E 7 
10 1 1 1 7.7514 E 2 
11 1 0.2563 0.62815 --------- WE 20 
12 1 0.4398 0.7199 --------- WE 16 
13 1 0.4240 0.712 --------- WE 17 
14 1 0.3834 0.6917 --------- WE 18 
15 1 1 1 0.62 E 10 
16 1 1 1 0.6425 E 9 
17 1 1 1 0.2931 E 12 
18 1 0.8432 0.9216 --------- WE 14 
19 0.5201 0.3605 0.4403 --------- IE 19 
20 0.4671 0.6865 0.5768 --------- IE 15 
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