Dynamics of Friction Stir Welding as a Conventional Metal Joining Technique in Manufacturing Industries

Authors

  • Imoh Ekanem Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, PMB. 1200, Nigeria.
  • Michael Bassey ‎Department of Mechatronics Engineering Technology, Akwa Ibom State Polytechnic, Ikot Osurua, PMB. 1200, Nigeria‎
  • Aniekan Ikpe Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, PMB. 1200, Nigeria.

Keywords:

Manufacturing industries, Metal joining, Product performance

Abstract

Metal joining procedures are essential in the manufacturing sector since they directly impact the strength and longevity of the end product. Arc welding and resistance welding, which are traditional welding techniques, have been extensively utilized for many years. Nevertheless, these procedures are constrained by limits in terms of the quality of the joints, distortion, and efficiency. Friction stir welding (FSW) technology has become a ground-breaking metal joining process in recent years, surpassing traditional welding procedures in terms of multiple advantages. The objective of this study was to investigate the potential of FSW technology in transforming traditional metal joining methods in the conventional production process. A thorough review was undertaken to examine the effects of FSW technology on traditional manufacturing processes. The review aimed to gather information on the concepts, applications, and advantages of FSW technology. Analysing existing research in this area provided insights into the practical use of FSW across different sectors. In addition, there were a number of discussions with industry professionals to collect ideas on the difficulties and possibilities of incorporating FSW technology into traditional production processes. Results of this study indicated that FSW technology has the capacity to fundamentally transform metal joining methods in the traditional production process. FSW has several benefits, including as enhanced joint integrity, less deformation, and increased productivity in comparison to conventional welding techniques. FSW may be easily incorporated into current manufacturing processes, resulting in cost reductions and improved product performance. Nevertheless, in order to fully use the advantages of FSW technology in traditional industrial processes, it is necessary to tackle some barriers such as the high cost of equipment, the necessity for process optimization, and the requirement for operator training. Finally, the use of FSW technology has the capacity to revolutionize metal joining methods, allowing product manufacturing to attain superior levels of quality, efficiency, and cost-effectiveness.

 

References

‎[1] ‎Ekefre, A., Ekanem, I. I., & Ikpe, A. E. (2024). Physical survey on the health hazards of welding ‎activities on welding operators in Uyo, Nigeria. Ibom medical journal, 17(2), 302–312. ‎https://doi.org/10.61386/imj.v7i2.441‎

‎[2] ‎Rudrapati, R. (2022). Effects of welding process conditions on friction stir welding of polymer ‎composites: A review. Composites part C: open access, 8, 100269. ‎https://doi.org/10.1016/j.jcomc.2022.100269‎

‎[3] ‎Bharti, S., Kumar, S., Singh, I., Kumar, D., Bhurat, S. S., Abdullah, M. R., & Rahimian Koloor, S. S. ‎‎(2023). A review of recent developments in friction stir welding for various industrial applications. ‎Journal of marine science and engineering, 12(1), 71. https://doi.org/10.3390/jmse12010071‎

‎[4] ‎Youlia, R. P., Utami, D., Romahadi, D., & Xiawei, Y. (2023). A review towards friction stir welding ‎technique: working principle and process parameters. Sinergi (Indonesia), 27(3), 289–308. ‎http://doi.org/10.22441/sinergi.2023.3.001‎

‎[5] ‎Kilic, S., Ozturk, F., & Demirdogen, M. F. (In Press). A comprehensive literature review on friction stir ‎welding: Process parameters, joint integrity, and mechanical properties. Journal of engineering research. ‎https://doi.org/10.1016/j.jer.2023.09.005‎

‎[6] ‎Komarasamy, M., Smith, C., Darsell, J., Choi, W., Jana, S., & Grant, G. (2021). Microstructure and ‎mechanical properties of friction stir welded Haynes 282. Materials characterization, 182, 111558. ‎https://doi.org/10.1016/j.matchar.2021.111558‎

‎[7] ‎Christy, J. V., Mourad, A. H. I., Sherif, M. M., & Shivamurthy, B. (2021). Review of recent trends in ‎friction stir welding process of aluminum alloys and aluminum metal matrix composites. Transactions ‎of nonferrous metals society of china, 31(11), 3281–3309. https://doi.org/10.1016/S1003-6326(21)65730-8‎

‎[8] ‎Huang, Y., Meng, X., Xie, Y., Wan, L., Lv, Z., Cao, J., & Feng, J. (2018). Friction stir welding/processing ‎of polymers and polymer matrix composites. Composites part a: applied science and manufacturing, 105, ‎‎235–257. https://doi.org/10.1016/j.compositesa.2017.12.005‎

‎[9] ‎Liu, J. F., Zhou, Y. G., Chen, S. J., Ren, S. Q., & Zou, J. (2023). Effects of friction stir welding on the ‎mechanical behaviors of extrusion-based additive manufactured polymer parts. Polymers, 15(15), 3288. ‎https://doi.org/10.3390/polym15153288‎

‎[10] ‎Heidarzadeh, A., Mironov, S., Kaibyshev, R., Çam, G., Simar, A., & Gerlich, A. (2021). Friction stir ‎welding/processing of metals and alloys: A comprehensive review on microstructural evolution. ‎Progress in materials science, 117, 100752. https://doi.org/10.1016/j.pmatsci.2020.100752‎

‎[11] ‎Ferreira, F. B., Felice, I., Brito, I., Oliveira, J. P., & Santos, T. (2023). A review of orbital friction stir ‎welding. Metals, 13(6), 1055. https://doi.org/10.3390/met13061055‎

‎[12] ‎Kaygusuz, E., Karaomerlıoglu, F., & Akıncı, S. (2023). A review of friction stir welding parameters, ‎process and application fields. Turkish journal of engineering, 7(4), 286-295. ‎https://doi.org/10.31127/tuje.1107210‎

‎[13] ‎Padhy, G. K., Wu, C. S., & Gao, S. (2018). Friction stir based welding and processing technologies-‎processes, parameters, microstructures and applications: A review. Journal of materials science & ‎technology, 34(1), 1–38. https://doi.org/10.1016/j.jmst.2017.11.029‎

‎[14] ‎Vilaça, P., & Thomas, W. (2011). Friction stir welding technology. In Structural connections for ‎lightweight metallic structures (pp. 85–124). Springer. https://doi.org/10.1007/8611_2011_56‎

‎[15] ‎He, X., Gu, F., & Ball, A. (2014). A review of numerical analysis of friction stir welding. Progress in ‎materials science, 65, 1–66. https://doi.org/10.1016/j.pmatsci.2014.03.003‎

‎[16] ‎El-Sayed, M. M., Shash, A. Y., Abd-Rabou, M., & ElSherbiny, M. G. (2021). Welding and processing of ‎metallic materials by using friction stir technique: A review. Journal of advanced joining processes, 3, ‎‎100059. https://doi.org/10.1016/j.jajp.2021.100059‎

‎[17] ‎Gibson, B. T., Lammlein, D. H., Prater, T. J., Longhurst, W. R., Cox, C. D., Ballun, M. C., …& Strauss, A. ‎M. (2014). Friction stir welding: Process, automation, and control. Journal of manufacturing processes, ‎‎16(1), 56–73. https://doi.org/10.1016/j.jmapro.2013.04.002‎

‎[18] ‎Dinesh, T. C. R., & Karvendhan, S. (2024). Advancements and applications of friction stir welding: a ‎comprehensive review. International journal of scientific research in engineering and management, 8(2), 1–8.‎

‎[19] ‎Ahmed, M. M. Z., El-Sayed Seleman, M. M., Fydrych, D., & Çam, G. (2023). Friction stir welding of ‎aluminum in the aerospace industry: the current progress and state-of-the-art review. Materials, 16(8), ‎‎2971. https://doi.org/10.3390/ma16082971‎

‎[20] ‎Shen, Z., Ding, Y., & Gerlich, A. P. (2020). Advances in friction stir spot welding. Critical reviews in solid ‎state and materials sciences, 45(6), 457–534. https://doi.org/10.1080/10408436.2019.1671799‎

‎[21] ‎Joy, J. A., Sajjad, M., & Jung, D.-W. (2018). Design and fabrication of friction stir welding machine. ‎MATEC web of conferences (Vol. 207, p. 3022). EDP Sciences.‎

‎[22] ‎de Sousa Santos, P. M. (2021). Development of refill friction stir spot welding (RFSSW) for lightweight ‎applications [Thesis]. https://pureportal.coventry.ac.uk/files/43460095/deSousaSantos2021.pdf

‎[23] ‎Salih, O. S., Ou, H., Sun, W., & McCartney, D. G. (2015). A review of friction stir welding of aluminium ‎matrix composites. Materials & design, 86, 61–71. https://doi.org/10.1016/j.matdes.2015.07.071‎

‎[24] ‎Mubiayi, M. P. (2023). Current developments in friction stir welding (FSW) and friction stir spot ‎welding (fssw) of aluminium and titanium alloys. Engineering proceedings, 56(1), 184. ‎https://doi.org/10.3390/ASEC2023-15881‎

‎[25] ‎Brown, R., Tang, W., & Reynolds, A. P. (2009). Multi-pass friction stir welding in alloy 7050-T7451: ‎Effects on weld response variables and on weld properties. Materials science and engineering: A, 513, ‎‎115–121. https://doi.org/10.1016/j.msea.2009.01.041‎

‎[26] ‎Eslami, S., Vilhena, F. A. T., Marques, A. T., & Moreira, P. (2020). New technological solution for ‎friction stir welding of composites. Procedia structural integrity, 28, 659–666. ‎https://doi.org/10.1016/j.prostr.2020.10.076‎

‎[27] ‎Mehta, K. P., Carlone, P., Astarita, A., Scherillo, F., Rubino, F., & Vora, P. (2019). Conventional and ‎cooling assisted friction stir welding of AA6061 and AZ31B alloys. Materials science and engineering: A, ‎‎759, 252–261. https://doi.org/10.1016/j.msea.2019.04.120‎

‎[28] ‎Martin, J. P. (2013). Stationary shoulder friction stir welding. Proceedings of the 1st international joint ‎symposium on joining and welding (pp. 477–482). Elsevier.‎

‎[29] ‎Tinguery, K. M. S., Rahem, A., Nadeau, F., & Fafard, M. (2023). Friction stir welding parameters ‎development of aa6061-t6 extruded alloy using a bobbin tool. Engineering proceedings, 43(1), 50. ‎https://doi.org/10.3390/engproc2023043050‎

‎[30] ‎Kubit, A., Trzepieciński, T., Kluz Rafałand Ochałek, K., & Slota, J. (2022). Multi-criteria optimisation of ‎friction stir welding parameters for EN AW-2024-T3 aluminium alloy joints. Materials, 15(15), 5428. ‎https://doi.org/10.3390/ma15155428‎

‎[31] ‎Kumar, S., & Roy, B. S. (2020). Friction stir welding of glass filled nylon 6 composites. Materials today: ‎proceedings, 24, 754–762. https://doi.org/10.1016/j.matpr.2020.04.383‎

‎[32] ‎Akbari, M., Aliha, M. R. M., & Berto, F. (2023). Investigating the role of different components of ‎friction stir welding tools on the generated heat and strain. Forces in mechanics, 10, 100166. ‎https://doi.org/10.1016/j.finmec.2023.100166‎

‎[33] ‎Mishra, R. S., Mahoney, M. W., Sato, Y., Hovanski, Y., & Verma, R. (2011). Friction stir welding and ‎processing VI. John Wiley & Sons.‎

‎[34] ‎Machniewicz, T., Nosal, P., Korbel, A., & Hebda, M. (2020). Effect of FSW traverse speed on mechanical ‎properties of copper plate joints. Materials, 13(8), 1937. https://doi.org/10.3390/ma13081937‎

‎[35] ‎Amatullah, M., Jan, M., Farooq, M., Zargar, A. S., Maqbool, A., & Khan, N. Z. (2022). Effect of tool ‎rotational speed on the friction stir welded aluminum alloys: A review. Materials today: proceedings, 62, ‎‎245–250. https://doi.org/10.1016/j.matpr.2022.03.220‎

‎[36] ‎Gharacheh, M. A., Kokabi, A. H., Daneshi, G. H., Shalchi, B., & Sarrafi, R. (2006). The influence of the ‎ratio of rotational speed/traverse speed (ω/v) on mechanical properties of AZ31 friction stir welds. ‎International journal of machine tools and manufacture, 46(15), 1983–1987. ‎https://doi.org/10.1016/j.ijmachtools.2006.01.007‎

‎[37] ‎Kosturek, R., Mierzyński, J., Wachowski, M., Torzewski, J., & Śnieżek, L. (2022). The influence of tool ‎traverse speed on the low cycle fatigue properties of AZ31 friction stir welded joints. Procedia ‎structural integrity, 36, 153–158. https://doi.org/10.1016/j.prostr.2022.01.017‎

‎[38] ‎Sharma, A., Khan, Z. A., & Siddiquee, A. N. (2022). A short review of the effect of plunge depth on ‎friction stir welding of aluminium pipes. Materials today: proceedings, 64, 1504–1506. ‎https://doi.org/10.1016/j.matpr.2022.05.257‎

‎[39] ‎Di Bella, G., Favaloro, F., & Borsellino, C. (2023). Effect of process parameters on friction stir welded ‎joints between dissimilar aluminum alloys: a review. Metals, 13(7), 1176. ‎https://doi.org/10.3390/met13071176‎

‎[40] ‎Acharya, U., Choudhury, S., Sethi, D., Akinlabi, E., & Roy, B. S. (2024). Enhancing joint performance in ‎friction stir welding through tailored double-butt-lap geometry. Welding in the world, 68, 1–13. ‎https://doi.org/10.1007/s40194-024-01737-1‎

‎[41] ‎Ohwoekevwo, J. U., Achebo, J. I., Obahiagbon, K. O., & I, E. I. (2023). Back propagation neutral ‎network based modelling and optimization of thermal conductivity of mild steel welds Agglutinated ‎by Tungsten Inert Gas welding technique. Journal of materials engineering, structures and computation, ‎‎2(3), 92–105. https://doi.org/10.5281/zenodo.8310192‎

‎[42] ‎Yuan, J., Ji, H., Zhong, Y., Cui, G., Xu, L., & Wang, X. (2023). Effects of different pre-heating welding ‎methods on the temperature field, residual stress and deformation of a Q345C steel butt-welded joint. ‎Materials, 16(13), 4782. https://doi.org/10.3390/ma16134782‎

‎[43] ‎Kah, P., Rajan, R., Martikainen, J., & Suoranta, R. (2015). Investigation of weld defects in friction-stir ‎welding and fusion welding of aluminium alloys. International journal of mechanical and materials ‎engineering, 10, 1–10. https://doi.org/10.1186/s40712-015-0053-8‎

‎[44] ‎Kumar, S., Mahajan, A., Kumar, S., & Singh, H. (2022). Friction stir welding: Types, merits & demerits, ‎applications, process variables & effect of tool pin profile. Materials today: proceedings, 56, 3051–3057. ‎https://doi.org/10.1016/j.matpr.2021.12.097‎

‎[45] ‎Pietras, A., & Rams, B. (2016). FSW welding of aluminium casting alloys. Archives of foundry ‎engineering, 16(2), 119–124. http://dx.doi.org/10.1515%2Fafe-2016-0038‎

‎[46] ‎Singh, K., Singh, G., & Singh, H. (2018). Review on friction stir welding of magnesium alloys. Journal of ‎magnesium and alloys, 6(4), 399–416. https://doi.org/10.1016/j.jma.2018.06.001‎

‎[47] ‎Gangwar, K., & Ramulu, M. (2018). Friction stir welding of titanium alloys: A review. Materials & ‎design, 141, 230–255. https://doi.org/10.1016/j.matdes.2017.12.033‎

‎[48] ‎Shankar, S., Mehta, K. P., Chattopadhyaya, S., & Vilaça, P. (2022). Dissimilar friction stir welding of Al ‎to non-Al metallic materials: An overview. Materials chemistry and physics, 288, 126371. ‎https://doi.org/10.1016/j.matchemphys.2022.126371‎

‎[49] ‎Haghshenas, M., & Gerlich, A. P. (2018). Joining of automotive sheet materials by friction-based ‎welding methods: A review. Engineering science and technology, an international journal, 21(1), 130–148. ‎https://doi.org/10.1016/j.jestch.2018.02.008‎

‎[50] ‎Shankar, S., Kaushal, A., Chattopadhyaya, S., Vilaça, P., & Bennis, F. (2021). Joining of aluminium to ‎polymer by friction stir welding: an overview. IOP conference series: materials science and engineering ‎‎(Vol. 1104, p. 12005). IOP Publishing.‎

‎[51] ‎Akinlabi, E. T., & Akinlabi, S. A. (2012). Friction stir welding process: a green technology. Proceedings ‎of world academy of science, engineering and technology (p. 1536). World Academy of Science, Engineering ‎and Technology (WASET).‎

‎[52] ‎Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials science and engineering: ‎R: reports, 50(1–2), 1–78. https://doi.org/10.1016/j.mser.2005.07.001‎

‎[53] ‎Barakat, A. A., Darras, B. M., Nazzal, M. A., & Ahmed, A. A. (2022). A comprehensive technical review ‎of the friction stir welding of metal-to-polymer hybrid structures. Polymers, 15(1), 220. ‎https://doi.org/10.3390/polym15010220‎

Published

2024-07-26

How to Cite

Dynamics of Friction Stir Welding as a Conventional Metal Joining Technique in Manufacturing Industries. (2024). Research Annals of Industrial and Systems Engineering, 1(1), 1-14. https://raise.reapress.com/journal/article/view/27